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Le CEMOTEV (Centre d’Etudes sur la Mondialisation, les Conflits, les Territoires et les 
Vulnérabilités) est une équipe d’accueil habilitée par le Ministère de l’Enseignement 
supérieur et de la Recherche (EA n°4457) en 2010. 

L'équipe, actuellement dirigée par Jean Cartier-Bresson (Directeur), Vincent Geronimi et 
Frédéric Leriche (Directeurs Adjoints), se compose de 20 enseignants-chercheurs économistes 
et géographes, une ingénieure de recherche, un gestionnaire chargé de l’actualisation du site 
du laboratoire et une vingtaine de doctorants. 

Les perspectives de recherche du CEMOTEV pour le quinquennal 2015/2019 s’inscrivent 
dans des orientations théoriques et méthodologiques ouvertes à la pluridisciplinarité, dans la 
façon d'aborder les différentes thématiques du développement et de l’environnement, en lien 
avec les acteurs (conflits), avec la dimension géographique (territoires) et le choix d'une 
approche dynamique (vulnérabilités / soutenabilité). 

Les cinq thématiques de notre projet quinquennal se situent à l’intersection des approches par 
les vulnérabilités et des approches territoriales : 

1. Enjeux de développement territorial liés aux ressources naturelles et 
environnementales 

2. Patrimoine et soutenabilité. Tourisme et développement notamment face au défi 
climatique 

3. Stratégies des firmes internationales, métropolisation et résiliences territoriales 

4. Insularité, gouvernance et développement soutenable 

5. Evaluations de la soutenabilité et de la vulnérabilité 

Thématiques de recherche : mondialisation et gouvernance, soutenabilité, développement, 
vulnérabilités, conflits, évaluation, économie des territoires, valorisation et gestion des 
ressources naturelles et des actifs environnementaux, paiements pour services 
environnementaux, réseaux énergétiques, aires «protégées» et territoires, tourisme du local au 
global, patrimoine, insularités, changement climatique, migrations. 

Pluridisciplinarité : Les thématiques sont abordées dans une perspective pluridisciplinaire et 
font appel à divers champs de la science économique et de la géographie : économie de 
l’environnement, économie du développement, économie du développement durable, 
économie internationale, économie industrielle.  

Réseaux et projets au Nord et au Sud : les problématiques de la mondialisation, de la 
vulnérabilité, des conflits, du développement durable conduisent le CEMOTEV à mettre 
l’accent sur les nouvelles dynamiques des relations Nord-Sud. Les réseaux de recherche 
existants (en Afrique, en Amérique latine et en Asie) et la participation aux projets de 
recherche renforcent les logiques partenariales Nord-Sud. 

 
Pour en savoir plus vous pouvez consulter le site internet 

http://cemotev.uvsq.fr 
 
Centre d’Etudes sur la Mondialisation, les Conflits, les Territoires et les 
VulnérabilitésUniversité de Versailles Saint-Quentin en Yvelines  47 Boulevard Vauban 
78047 Guyancourt Cedex Tel : 01 39 25 57 00 Mail : cemotev@uvsq.fr 
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Introduction 

 
The holding period is an important topic in finance and has been the subject of numerous 
theoretical and empirical research studies (see Atkins and Dyl, 1997; In, Kim and Gençayc, 
2011 and Lim and Kim, 2011). The holding period in real estate portfolio management is a 
topic that has only recently drawn the attention of both investors and academics. 
Traditionally, real estate investment had been a rather passive process, with investors 
adopting a buy-and-hold strategy for real estate, an asset class capable of generating relatively 
stable recurring cash flow derived from rental agreements. The strategy was to hold real estate 
for many years, a valid strategy given the large transaction costs. However, the sophistication 
of the real estate industry and to some extent the general perception that real estate cycles tend 
to be shorter have led to more attention to the notion of holding period and especially of ex-
ante holding period. 
 
Calculations of the optimal holding period are nearly always empirical and the holding period 
is assumed to depend upon many factors, including market conditions, regulation, transactions 
costs and tax, types of property, lease length, and investment style. Hendershott and Ling 
(1984), Gau and Wang (1994) or Fisher and Young (2000) show that, for the US, the holding 
durations depend mainly on tax laws. Brown and Geurts (2005) show the average holding 
period is around 5 years through a sample of small residential investments over the period 
1970-1990 in San Diego. They conclude that investors sell their assets earlier when values 
rise faster than rents. For the UK market, Rowley, Gibson and Ward (1996) prove the 
existence of ex ante expectations about holding periods, related to depreciation or 
obsolescence factors. Collett, Lizieri and Ward (2003) show ex post holding periods are 
higher than those usually claimed by investors using a commercial real estate database of 
properties in the UK. Their empirical analysis shows that the median holding period is about 
seven years. They also suggest a link between price volatility and holding period but they fail 
to highlight a proxy for measuring the relationship. For residential real estate, Cheng et al. 
(2010) demonstrate that higher illiquidity and transaction costs lead to longer holding periods, 
while higher return volatility implies shorter holding periods. These latter results are 
consistent with previous papers on financial assets. These kind of empirical studies does not 
allow concluding about the relation between real estate asset volatility and optimal holding 
period.1 
 
Many attempts have sought to develop models to determine optimal holding period for real 
estate portfolio.2 Baroni et al. (2007) determine the optimal holding period ex-ante (e.g. for 
closed funds, when the initial investment is realized). They model terminal values as diffusion 

                                                 
1 Tarbert (1998) shows how over the long run, it is difficult to estimate correlation and therefore to deal with 
investment horizon. 
2 Some of the optimization problems are specific to real estate investments and differ from standard financial 
portfolio management problems (see Karatzas and Shreve, 2001). First, real estate assets exhibit specificities 
(illiquidity, divisibility, localisation etc.). Second, the control variable is the time to sell and not the usual 
financial portfolio weights as highlighted by Oksendal (2007) for the optimal time to invest in a project with an 
infinite horizon. 
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processes, and derive a closed formula for the optimal holding period. This model has been 
further developed by Amédée-Manesme et al. (2015) who incorporate lease structure effect in 
order to better account for the specificities of real estate. They show how the volatility can 
influence the optimal time to sell in the context of rational risk neutral investors. Barthélémy 
and Prigent (2009) also compute an optimal ex-ante time to sell using American option 
approach. Nevertheless, they assume that the investor is risk-neutral. Due to this latter 
hypothesis, the volatility of the real estate asset either has no impact on the optimal holding 
period or its role is only implicit. Regarding the volatility, Rehring (2012) examines the U.K. 
real estate market and shows that the conditional standard deviation of commercial real estate 
returns depends on the investment maturity as it is the case for usual stocks in particular on 
the long-term horizons. The transaction costs and marketing period are also discussed. 
 
In this paper, our aim is to better emphasize the impact of the volatility when the investor is 
risk averse. For this purpose, we consider a risk-averse investor that maximizes his expected 
utility at maturity over a given time period. In this approach, time horizon and risk aversion 
are the key parameters. We thus introduce expected utility (EU) theory as suggested by Arrow 
(1965) to model decisions under uncertainty for risk averse investors. This way, we account 
for preferences of individual investors who seek to maximize their preference over possible 
events according to their corresponding probabilities. We concentrate here on the Hyperbolic 
Absolute Risk Aversion (HARA)3 utility functions class and particularly on the sub-class 
“Constant relative risk aversion” (CRRA) utility function. Our results show that the relative 
risk aversion plays a key role to evaluate the monetary loss from not having access to the 
“best” horizon. This feature has to be related to previous works about the influence of risk 
aversion such as Kallberg and Ziemba (1983). We also examine the robustness of our results 
with respect to the utility specification.  
 
The model is built up on previous work. First, we determine the optimal holding period when 
it has to be chosen at initial date, extending previous results of Baroni et al. (2007). The 
investor is assumed to know probability distribution of real estate asset. We illustrate what are 
the impacts of the risk aversion, the real asset value and the volatility on the selling strategies. 
We determine this latter one when the investor is perfectly informed about the growth rate 
dynamics but must choose his strategy only at initial time. However, usually such a solution is 
not time consistent since the same determination of optimal time to sell at a future date leads 
to a different solution. Second, we study the best ideal case where the investor knows exactly 
the price dynamics, as soon as a new period starts. In that case, he can immediately choose the 
best time to sell the asset. This approach provides the upper bound of the present value of the 
portfolio as a function of holding period policy. Indeed, the present value is maximized using 
perfect foresight. We use this special framework as a benchmark. Finally, we determine the 
optimal holding period according to the American option approach. In this context, at each 
time during a given management period, the investor compares the present expected utility of 
portfolio value with the maximal expected utility he could have if he would keep the asset. 

                                                 
3 The specification of utility functions is a tough problem because different utility functions have different 
behavioural implications. In this line, the work of de Palma and Prigent (2009) can be consulted. 
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We show that the investor must sell as soon as the present utility is higher than its 
expectation.  
 
We also introduce the notion of compensating variation to evaluate the monetary loss of not 
having the “best” portfolio (here not having chosen the best optimal time to sell). 
Compensating variation is the adjustment that returns the consumer to the original utility after 
an economic change has occurred. As shown in de Palma and Prigent (2008, 2009), the 
compensating variation allows to measure the adequacy of a given portfolio to investor’s 
utility.  

Our work contributes to the academic literature in optimal holding period in real estate. Prior 
studies have mainly been empirical and did not propose models to explain investment 
horizon. First by considering the risk aversion of investors, second by proposing a model that 
allows computing optimal holding period and finally by providing solutions whose properties 
may explain most of the previous empirical results. To the best of our knowledge, this paper 
provides the first analysis of the optimal holding period in real estate when utility function is 
considered. In addition, practitioners may find here an interesting approach to better model 
their ex-ante optimal holding period. 

The structure of the paper is laid out as follows. Section 2 presents the continuous-time 
framework and the optimal time to sell we get in the neutral risk investor case. Results for the 
optimal holding period when the date must be chosen at initial time is developed in section 3 
for quadratic utility function and CRRA utility functions. Section 4 gives a theoretical 
framework for other portfolio strategies, as the perfectly informed investor, the American 
option solution and the buy-and-hold strategy. All these strategies are compared in Section 5 
using compensating variations. Section 6 concludes. 

 

1. Continuous-time model and risk neutral investor 

 
In this section, the time of sale is pre-set, committed irrevocably at time 0, based on the 
expected dynamics of the portfolio value and its cash flow. The real estate portfolio value is 
defined as the sum of the discounted free cash flows (FCF) and the discounted terminal value 
(the selling price). Denote k as the discount rate (weighted average cost of capital, WACC), 
which is used to discount the different free cash flows, and the terminal value. We assume 
that the free cash flow grows at a constant rate g 4. 

 
 
 

                                                 
4 This assumption allows explicit solutions for the probability distributions of the optimal times to sell and of the 
optimal portfolio values. The introduction of stochastic rates would lead to only simulated solutions.  
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1.1 Continuous-time model 

 
As Baroni et al. (2007), we suppose that the price dynamics, which corresponds to the  
 
terminal value of a diversified portfolio (for instance a real estate index), follows a geometric 
Brownian motion:

 
 t

t
t

d P
dt dW

P
     (1) 

where tW  is a standard Brownian motion. We have: 

 21
0 2expt tP P t W    

  
  

     (2) 

This equation assumes that the real estate return can be modelled as a simple diffusion process 
where parameters   and   are respectively equal to the trend and to the volatility. The 

expected return of the asset at time t  is given by: 

  
0

exptPE t
P


 

  
 

 (3) 

Then the future real estate index value at time t, discounted at time 0, can be expressed as: 

   21
0 2

0

exp  with expt
t t

P
P P k t W E k t

P
     

  
  

 
      

 
. (4) 

Denote by 0FCF  the initial value of the free cash flow. The continuous-time version of the 

sum of the discounted free cash flows sFCF  is equal to: 

  
0

0 0

t t
k g sks

t sC FCF e ds FCF e ds      (5) 

which leads to 

  0 1 k g t
t

FCF
C e

k g
  
  
 

  


 (6) 

 
Introduce the real estate portfolio value process ,V  which is the sum of the discounted free 

cash flows and the future real estate index value at time t, discounted at time 0:  
 

   21
2

01 e .tk t Wat
t t tV C P c e P

              (7) 

 

We determine the portfolio value 
T

V  for a given maturity T . This assumption on the time 

horizon allows to take account of selling constraints before a limit date. The higher T , the 
less stringent this limit. Additionally, this hypothesis allows the study of buy-and-hold 
strategies (see section 6). The future portfolio value at maturity, discounted at time 0, is given 
by: 

   21
20

01 e Tk T Wk g T

T

FCF
V e P

k g

           
 

   


        (8) 
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The portfolio value 
T

V  is the sum of a deterministic component and a Lognormal random 

variable. 
 

In what follows, we determine the optimal solution at time 0, for a given maturity T  and for 
an investor maximizing expected utility. First recall that the sum of the discounted free cash 
flows is always increasing due to the cash accumulation over time. Second, we have to 
analyze the expected utility of the future real estate index value at time t, discounted at time 0: 
if the price return   is higher than the WACC k, then, the optimal solution for the linear 

utility case is simply equal to the maturity T .  
 
Thus, in what follows, we consider the case k  . Consequently, not selling the asset implies 

a higher cumulated cash but a smaller discounted expected terminal value  
0 e k tP    Hence, 

the investor has to choose between more (discounted) flows and less expected discounted 
index value. We also focus on the sub case g  , which corresponds to empirical data.  

 
 
 
We investigate two main numerical cases. These cases are those of Baroni et al. (2007): 
 
 

 Case 1 corresponds to an early selling, due in particular to weak expected return of the 
real estate asset. We set : 

 

0 04 4 5 , 3 8 4 100 100 22% % g % k % P FCF              . 

 

 Case 2 corresponds to a late selling, due in particular to higher expected return of the 
real estate asset. We set : 

0 06 5 , 2 9 5 100 100 15% % g % k % P FCF             . 

 

1.2  Computation with the linear utility function: (see Barthélémy and 
Prigent, 2009) 

The optimization problem is: 

 
[0 ] tt T

Max E V 
   

  (9) 

Since the expectation of tV  is equal to: 

    0
01 k g t k t

t

FCF
E V e P e

k g
           

   


 (10) 

we deduce: 

      
0 0

k g t k ttE V
FCF e P k e

t


 
     

   


 (11) 

Then, the optimal holding period is determined as follows. 
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 1: The initial price 0P  is smaller than 0 ( )FCF g T
k e 


 

 . 

Then, the optimal time to sell T   corresponds to the maturity T . Since the Price Earning 

Ratio (PER) 0

0

P
FCF  is too small (  

( )g Te
k




 

 ), the sell is not relevant before maturity. 

 

 2: The initial price 0P  lies between the two values 0 ( )FCF g T
k e 


 

  and 0FCF
k  . 

The optimal time to sell T   is solution of the following equation:  

 0tE V

t

 
  

 


 (12) 

From Equation (11), we deduce5:  

 0

0

1 1
ln

FCF
T

g P k 
  
     

 (13) 

 

In particular, note that T   is a decreasing function of the initial price 0P  and of the difference 

between the index return   and the growth rate g  of the free cash flows. This latter property 

was empirically observed by Brown and Geurts (2005). It means that investors sell property 
sooner when values rise faster than rent. 
 

 3: The initial price 0P  is higher than 0FCF
k  . 

The optimal time to sell T   corresponds to the initial time 0 . Since the PER 0

0

P
FCF  is 

sufficiently large (  1
k  ), there is no reason to keep the asset P . As an illustration, the 

cumulative value tC  of the tFCF  values, of the expectation of the index value [ ]tE P  and the 

expectation of the portfolio value [ ]tE V  are displayed in Figure 1. We consider two sets of 

parameter values for a 20  year management period ( 20T  ).  
 

We note that the discounted expected value tV  of the portfolio is concave. The parameter 

values imply that the optimal holding period, T  , is respectively equal to 9 13  years and 

16.11 years. For these two examples, the optimal time to sell T   is smaller than the maturity 

T . In the second example, the discounted portfolio value varies up to 20%6. Knowing the 
optimal time to sell T   which is deterministic, the probability distribution of the discounted 

                                                 
5 This is the continuous-time version of the solution of Baroni et al. (2007). 
 
6 We can also examine how the solution depends on the index value 0P . For example, proportional transaction 

costs imply a reduction of 0P . For instance, for the case 2, a tax of 5% leads to an optimal time to sell T   equal 

to 17.39 years, instead of 16.11 years when there is no transaction cost. With a 10% tax, the solution becomes 
18.74 years. This is in line with the empirical results showing that high transaction costs imply longer holding 
periods (see for example Collet et al., 2003).  
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portfolio value 
T

V   can be determined. The value 
T

V  is equal to:  

 ( ) 20
01 exp 1 2

( )
k g T

T T

FCF
V e P k T W

k g
  

   
   
         

   
 
 

       


  

 

Denote 0 ( )
( ) 1FCF k g T
k gA e

 
 
 
 
 

 
   the cumulative discounted free cash flow value at T  . Since, 

from (13), the optimal time to sell satisfies: 

 
 

0

0

1
ln

FCF
T

g P k 
  
     

 

then, we deduce: 

 

 
0 0

0

1
( )

k g
g

FCF FCF
A

k g P k






           

 

and the cdf 
T

VF


 of 
T

V  is given by:  

2

0

0 if

( ) 1
ln 1 2 ifT

V

v A

F v v A
N k T v A

PT
 




  
                 

 


         
 

  (14) 

where N  denotes the cdf of the standard Gaussian distribution. 
 

2. Optimal time to sell T  , chosen at time 0 

 
In what follows, we introduce a standard decision criterion based on a separable utility 
function which is additive with respect to current time. It is defined by: 

 
0

( ) ( )
t s t

s te u C ds E U P e    

 
where u and U are utility functions respectively defined on the cash flows and the current 
market value. The assumption is that the free cash flows can be used to consume along the 
time period. Such kind of inter temporal utility function allows getting the time consistency. 

The term ( )t
te u C can be interpreted as the utility of the consumption at date t viewed at 

initial time 0. Note that e  corresponds to a discount felicity not money. Since it is less than 
one, the felicity of one tomorrow is smaller than one today, which means that the individual 
has time impatience for happiness. 
In this paper, we introduce Hyperbolic Risk Aversion function. A utility function (.)u  is of 

type HARA (“hyperbolic absolute risk aversion”) if the inverse of absolute risk-aversion is a 
linear function of wealth. HARA utility functions, (.)u , are written as follows: 

1( ) ( ( / )) cu x a b x c   , where (.)u  is defined over the domain ( / ) 0b x c  . The parameters 

a, b and c are constant such that (1 ) / 0a c c  . The associated ARA ( )A x  is given by: 

  1
( ) ( / )A x b x c

  , the inverse of which is indeed a linear function of wealth, x. Note that 



 10

the condition (1 ) / 0a c c   allows us to conclude that ' 0u   and '' 0u  . Three sub-classes 

are typically distinguished:7 the Quadratic Utility Function, the “Constant absolute risk 
aversion” (CARA) and the “Constant relative risk aversion” (CRRA). In this part, we first 
analyse some of the specificities of the quadratic function and then, we concentrate to the 
CRRA function.8 
 
 

2.1. Computation with the quadratic utility function 

 
The Quadratic Utility Function refers to the case where the parameter c of the ARA function 

( )A x  equal -1. For (.)u  to be positive, the domain here is restricted to the interval ] , [b  . 

The ARA of a quadratic utility function is increasing in wealth (“increasing absolute risk 
aversion”, IARA). This implies that the risk premium (.)  is increasing, which is a fairly 

counter-intuitive property, and which indicates the limits of the application of this function 
(despite the simplicity of its use in the determination of optimal portfolios, for example). 
 
 
 
 
 

The expected utility of the portfolio value tV  at time t in the case of the quadratic utility 
function is given by the sum of two terms: 
 

- The first one corresponds to the utility defined on the cash flows: 
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e e
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  (15) 

 
 

- The second one is the utility provided by the market value 

      2

2
t t P

t t tE e U P e E P E P            
 (16) 

              We get: 

                                                            
 21

22 22 2
0 e tk t W

tP P
        (17) 

                                                 
7 See Gollier (2001) for main definitions and properties of utility functions. 
8 As emphasized by most researchers on decision theory, the CRRA utility is much more appropriate to describe 
true behavior towards risk than the CARA one. However, we can also determine and analyze the solution for this 
latter case (details about it are available on request). 
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              and knowing that  
 21

2 tA B t BW AtE e e
     

, where  0, ,tW N t  

 
              we deduce that the expectation of (17) is equal to: 

 21
222 2

0 e
k t

tE P P
       

 And then relation (16) is equal to 

     21
222

0 0e e e
2

k tk tt tP
tE e U P P P

                
  (18) 

 
Then the discounted expected value of the portfolio at time t described, adding (15) and (18) 
is  

 

 
 

 
   21

2

2 2
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1 1
e e e
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e e
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For instance, Figure 1 illustrates the impact of   on the portfolio utility function according to 
the selling time. We consider the two previous numerical cases 1 and 2. Notice that 0   
corresponds to the risk neutral case presented in section 2.1. In both cases the optimal time to 
sell is increasing with the level of the risk aversion  .9  
 

 
(0) 0.13; (0.001) 13.37; (0.002) 16.78T T T          (0) 16.11; (0.001) 17.49; (0.002) 18.83T T T      

       a. Case 1       b. Case 2 
 

Fig 1. Quadratic utility, optimal time T   with respect to risk aversion   
 

                                                 
9 If risk aversion raises, the expected utility can be no longer monotone with respect to the selling time. The 
quadratic utility function is not clearly defined for all the values of  . If   becomes high enough the utility 
function is then a decreasing function for values higher than 1 /  . 
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2.2. Computation with the CRRA utility function 

 
The “Constant relative risk aversion” (CRRA) function is one of the HARA sub-class 
function. It is defined as the case when the parameter b of the function ( )A x  is equal to 0, 

then ( )R x c  is constant and (.)u  is of the type 1( ) /(1 ) if 1, ln[ ] if 1cu x x c c x c    . This 

type of function exhibits decreasing absolute risk-aversion (DARA).  
 

Three main cases can be distinguished for the CRRA case:  
 

- If 0 1c   the individual has a small relative risk aversion. If his wealth becomes 
null, his utility is equal to 0. Thus, it is lower bounded. On the contrary, if his wealth 
becomes high, he is never satiated.  
 

- For the special case 1c   the utility converges to -∞ when the wealth converges to 0 
but the individual is still never satiate -∞ d when his wealth increases.  
 

- Finally, for 1c   the utility converges to -∞ when the wealth converges to 0 more 
quickly than for the previous logarithm case but now the individual can be satiated 
(his utility is upper bounded). In that latter case, such individual searches first of all 
for limiting the downside risk while accepting to give up potential high returns. 

 
The expected utility is given by:  

 
0
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Therefore, we have: 
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Finally, we get: 
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1
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and the first derivative with respect to time t is equal to: 
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1
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Previous formula allows getting explicit relations between the optimal selling time T 
 and 

various parameters such as the relative risk aversions c  and P , the volatility   and the 

initial real estate asset value 0P .  

 

3. Solution analysis for the CRRA utility 

 

3.1. Conditions on existence of a non degenerated solution 

 
First, we note that, under specific assumptions about both real estate and utility parameters, 
the sign of the previous derivative with respect to time is constant, independently from the 
initial cash flow and real asset values.  
 
We have two cases: 

 
A) If (1 ) 0c   and     21

21 1 ( ) 0P P Pk              then the derivative is non 

negative. Thus, the global utility is an increasing function of the time. In such a case, it 
is never optimal to sell before maturity. The second assumption implies that 1P  . It 

means also that the coefficient   must be relatively high, which corresponds to a high 

degree of impatience.  
 

B) If (1 ) 0c   and     21
21 1 ( ) 0P P Pk             , then the derivative is non 

positive. Thus, the global utility is a decreasing function of the time. In such a case, it 
is never optimal to wait for selling. The first assumption is not too realistic since here 
the cash flows are deterministic.  
 

In what follows, we analyze the other more realistic cases since they depend on initial cash 
flow and real asset values. We assume in particular:  
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    21
21 1 ( ) 0P P Pk             . 

 
Sub case B.1. The real estate and risk aversion parameters are such that: 
 

   21
21 ( ) (1 )( ) 1 0P c P Pk g k              

 
This case happens for instance when the relative risk aversion P  is high. The optimality 

corresponds here to a minimum as underlined by Figure 2. On the whole range [0, T ], the 

utility is always increasing. Then, it is optimal to wait for selling: *T T .  

 

 
 

Fig 2. Condition for the existence of the analytical for T   
 
  
Sub case B.2. The real estate and risk aversion parameters are such that: 
 

   21
21 ( ) (1 )( ) 1 0P c P Pk g k              

 

This happens for example when 0< C P    <1 and the volatility has usual values. Then, 

we have to distinguish three main cases for the initial value 0P  of the real asset. For this 

purpose, denote respectively by P  and P the following terms: 

 

 
   

   

 
1

2 1(1 ) 1
21

0 21
2

exp 1 ( ) (1 )( ) 1(1 )

1 1 ( ) 1

Pc

P
P c P PP

C P P P

T k g k
P FCF

k




     
      




              
         

 

and 

     

1

1(1 )
0

21
2

(1 )

11 ( ) 1

Pc
P

CP P P

FCF
P

k
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By dividing P  and P  by 0FCF , we get the corresponding limits on the PER coefficient, PER  

and PER . The range between PER  and PER  is an increasing function of the spread between 

  and g  as illustrated by Figure 3. Note that the dashed line indicates a PER of 22, which 

corresponds to the one of the numerical case 1. 
 

         
4.4% and 3%g                    4.4% and 1%g      

 
Fig 3. PER limits as a function of g   

 
 

i) The initial value 0P  is smaller than P  

 
In that case, the optimal time to sell corresponds to the maturity. Indeed, the price earning 

ratio (PER) 0 0/P FCF is too small, which implies that the sell is not relevant before maturity. 

 

ii) The initial value lies between P  and P . 

The optimal solution *T corresponding to a null first derivative is given by: 

   

       

*
21

2

(1 )
0

1 21
20

1

1 ( ) (1 )( ) 1

(1 ) 1

1 1 ( ) 1

c

P

P c P P

P

C P P P

T
k g k

FCF
Log

kP





     


      





 
      

 
 

         

  (17) 

 

For the special case C P    , we get: 

    
 

 

21
2

1

0

21
0 2

1
*

1

1

1 ( )

T
g

FCF
Log

P k



   

    



 
  

                

  (18) 

 
Note that, for  =0 and  =0, we recover the result corresponding to the quasi linear utility 

*T T
*T T

* 0T  * 0T 

* ]0, [T T * ]0, [T T
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(no risk aversion):  

   
* 0

0

1 1FCF
T Log

g P k 
  

       
 

 
In what follows, we begin by examining the shape of the utility function according to the 
relative risk aversion  . Then, we study the impact of the volatility.  

 
 

iii) The initial value 0P  is higher than P  

 

In that case, the optimal time to sell corresponds to the initial time 0. Since the PER 0 0/P FCF  

is sufficiently large, there is no reason to wait for selling. 
 

Remark: For 0 , 1C P   , both lower and upper bounds P and P  are decreasing functions 

with respect to parameter  . This is also true for the optimal solution given in Relation (17).  

 
 

3.2. Sensitivities to low risk aversion and to volatility with C P   

 
The optimal time to sell is an increasing function of the risk aversion. Higher the risk 
aversion, higher the rents weight in the portfolio. Hence, it leads to wait more before selling 
the portfolio because the rents may balance longer the loss in capital. This is shown on Figure 
4 representing the expected utility for the first numerical example (case 1) and small values of 

 . Let us notice that, with 0C P     ,  we get the optimal time to sell obtained in 

Barthélémy and Prigent (2009), 9.13T    (upper curve in both Figures 4a and 4b).With 

0.001C P     , we get 9.43T   , and with 0.002  , 9.73T   . The effects on T   are 

more important for a higher level of risk aversion (see Figure 4b). Indeed the optimal time to 

sell can be equal to the maturity itself (see the curve corresponding to 0.004C P     , 

for which 20T T   ). Note that we recover the same qualitative effects for the second 
numerical case (case 2). 
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a. 0.002P       b. 0.04P   

Fig 4. Expected utility as a function of the risk aversion, first numerical example 

Small values of C P    . 

 
 

The volatility has a negative impact on the optimal time to sell. When the volatility is 

increasing, the optimal time to sell is decreasing ( * / 0dT d  ). But, for the given parameters 

values of cases 1 or 2, the impact is negligible as presented in Table 1 and in Table 2.  
 

  *( 0)T    *( 0.001)T   *( 0.002)T  
0.05 9.131 9.431 9.732 
0.15 9.131 9.420 9.710 
0.25 9.131 9.398 9.660 

 
Table 1. Optimal time to sell as function of  - first numerical example 

 
  *( 0)T    *( 0.01)T    *( 0.02)T    

0.05 16.109 17.206 18.328 
0.15 16.109 17.177 18.274 
0.30 16.109 17.079 18.094 

 
Table 2. Optimal time to sell as function of  - second numerical example 

 
 

3.3. Sensitivities to low risk aversion and to volatility with 
0 and 0 1C P     

As in subsection 4.1, we can analyze the range between PER  and PER  (see Figure 3). Figure 

5a shows that the spread PER PER  is increasing with P  as well as the two bounds, PER  

and PER . Moreover, with a PER of 22 (the one of the numerical case 1), values of P  up to 

around 0.04 lead to an interior solution for T  , as underlined by the dashed line. This is 
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illustrated in a other way on Figure 5b where values of P  equal to 0.015 or 0.030 lead to a 

20T   , while the curve corresponding to 0.045P   imply that 20T   . Finally, As in the 

previous section with C P  , the increase of the risk parameter P  leads to a higher optimal 

time to sell (see Figure 5.b).  
 

     
a. PER     b. Expected utility  

Fig 5. PER limits and expected utility for the numerical example 1 - w.r.t. the risk aversion, 

first numerical example 0C   

 
 

Table 3 exhibits the same relation between T  and  . 
 

  *( 0)PT    *( 0.01)PT   *( 0.02)PT   *( 0.03)PT    

0.05 9.13 12.06 14.84 17.48 
0.15 9.13 11.97 14.70 17.32 
0.25 9.13 11.79 14.41 16.99 

 

Table 3. Optimal time to sell as function of  - first numerical example, 0C   

 
Remark: If we consider much higher volatilities (as for example for equity markets during 
the recent financial crisis), we note that the optimal time to sell can be decreasing with respect 
to the relative risk aversion but takes high values for a relative risk aversion lying between 0 
and 1, as shown in next subsection (see Figure 6a). 

 
3.4. Sensitivities to volatility and to high risk aversion to the real estate asset with 

0 and 1C P    

In what follows, we assume that the relative risk aversion to the real asset can be moderate or 

high. It means that we set 1P  . In such a case, the optimal time to sell as a function of the 

risk aversion is decreasing from a given aversion level, as shown in Figure 6b, contrary to the 

case 1P  , illustrated in Figure 6a. 

 

*T T

* 0T 

* ]0, [T T
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a. 1P       b. 1P   

 

Fig 6. T   as a function of volatility, first numerical example, 0C    

 
Additionally, if the volatility takes high values, the optimal time to sell can be smaller than for 
the risk-neutral case (see Figure 6b, where this latter value is equal to 9.13 and corresponds to 
the straight line). 
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4. Other optimal times to sell for a risk averse investor 

4.1. Perfectly informed investor T   

 
In this section, the investor is supposed to have a perfect foresight about the entire future price 
path. Trajectories are random (the investor does not choose the realized path) but, at time 0, 
the whole path is known. Therefore, the investor can maximize with respect to this trajectory. 
Thus, the optimal solution is deterministic conditionally to this information. Nevertheless, the 
path is unknown just before time 0. Consequently, the optimal time to sell is a random 
variable. This ‘ideal’ framework is not realistic but provides an upward benchmark. Note that, 
since the investor is rational, his utility function is increasing. Therefore, since the path is 
known, the maximization of the utility of his portfolio value is equivalent to the maximization 
of a linear utility. This means that we recover previous solution provided in Barthélémy and 
Prigent (2009), which does not depend on risk aversion. In what follows, we recall the 

distributions of the optimal holding period T  and of the optimal value 
T

V   and provide the 

explicit formula by means of a mild approximation of the aforementioned paper. Introduce the 
function G  defined by:  
 

 21 1
( ) 1

2 22 2 2 2
myy t y t

G m y t Erfc m e Erfc m
t t

   
             

   
 

 
where the function Erfc  is given by: 

 
22

( ) u

x

Erfc x e du



   

Denote also  

 20

0

( ) 1 2 and ( ) ln
FCF v

A v k B v
v P

 
 

        
 

 

Then, the approximated cdf of TV   is given explicitly by:  

 

 
0

0

0 for

[ ] .( ) ( )
forT

v P

P V v A v B v
G T v P

 


  
         

 (15) 

 

The probability that the real estate portfolio value is higher than 0P  is equal to 1. Thus, 

whatever the path, the investor receives at least 0P . Indeed, if all the future discounted 

portfolio values are lower than the initial price, he knows he has to sell at time 0 and then 

receives exactly 0P . Summing up, time T   does not depend on risk aversion but its 

probability distribution does.  
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4.2. American optimal selling time T   

 
In this third case, we allow that the investor may choose the optimal time to sell, according to 
market fluctuations and information from past observations. In this case, he faces an 
“American” option problem. Recall that the investor preferences are modelled by means of 

utility function. At any time t before selling, he compares the utility of the present value tP  

with the maximum of the future utility value he expects given the available information at 
time t (mathematically speaking he computes the maximum expected utility of his portfolio 

on all 
t T

J -measurable stopping times  ). It means that he decides to sell at time t only if the 

utility of his portfolio value at this time is higher than the maximal expected utility that he can 

expect to reach if he does not sell at this time t . Thus, he has to compare ( )tU P  with 

( ) ( )sup ( ) ( )
t T

s t t
s tt

E e u C ds e U P
   

 

     
  

 
J J . Intuitively, the optimal time T   must be the 

first time at which the utility ( )tU P  is “sufficiently” high. At this price level, the future free 

cash flows (received in case of no sell) will not be high enough to balance an index value 

lower than the price tP  at time t (the expected index value decreases with time as the 

discounted trend k   is negative). The optimal time T   corresponds exactly to the first 

time at which the asset price tP  is higher than a deterministic level (see Appendix B). This 

result generalizes the case considered in Barthélémy and Prigent (2009) where the investor 

has a linear utility. In that case, he sells directly the asset if the price 0P  is higher than 0FCF
k  . 

Then, since the return of the discounted free cash flows is equal to ( )k g te  , the price tP  has to 

be compared with the value 0 ( )FCF k g t
k e

 
 . Here, we provide an extension of this result when the 

individual has risk aversion.  
 
 

4.2.1. The American option problem 
 

Denote by ( )x tV  the following value function: 

 

 ( ) ( )( ) sup ( ) ( )
t T

s t t
s tt

x t E e u C ds e U P P x
   

 

     
  

 
   JV  

 

Note that we always have ( ) ( )x t U x  V  since t   
t T

J  and, in that case, ( ) ( )x t U x  V
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As usual for American options10, two “regions” have to be considered:  
 

 The continuity region: 

 ( ) [0 ] ( ) ( )C x t R T x t U x  
 
  

      V  

 

 The stopping region: 

 ( ) [0 ] ( ) ( )S x t R T x t U x  
 
  

      V  

 

The first optimal stopping time tT   after time t  is given by 

 

 ( ) ( )inf [ ] ( ) ( ) ( )s t t
t st

T t T P e u C ds e U P
   

  
 

     
 
  

      V  

Then: 

  inf [ ] ( , )tT t T P C      
 

 
4.2.2. Computation of the value functionV   

 
To determine tT   we have to calculate ( )x t V   We have to compute: 

  ( ) ( ) 2sup ( ) exp 1 2 ( )
t T

s t t
s t t tt

E e u C ds e U P k t W W P x
   

    


               
       J  

In particular, we have to search for the value t
  for which the maximum 

 

  ( ) ( ) 2sup ( ) exp 1 2 ( )
t T

s t t
s tt

E e u C ds e U x k t W W
   

    


               
      J  

is achieved.  
 

This problem is the dynamic version of the determination of T  presented in Section 4. 

Introduce the function t xf   defined by: 

 ( ) ( ) 2
, ( ) ( ) exp 1 2

t s t t
t x z st

f e u C ds e U x k z
        
       

     
       

This function is strictly increasing with respect to .x   
 
According to the distribution of the random variable z (which here is the standard Gaussian 
distribution), we have to solve: 

,sup ( )
t T

t x zE f








   
J  

 
 

                                                 
10 See Elliott and Kopp (1999, p. 193). 
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Case 1. The optimal solution is equal to the maturity T . 
 
We have:  

  ( ) ( ) 2( ) ( ) exp 1 2 ( )
T s t T t

s tTt
x t E e u C ds e U x k T t W W    

                
        V  

Using Jensen inequality, we deduce in that case that  ( ) ,x t U x V for all three standard 

utility functions (since they are concave and strictly increasing). 
  
 
Case 2: The optimal solution lies strictly between t and T .  
  

The optimal time t
  is equal to ( )t     where   is the solution of the following equation: 

 , ( ) 0t x zE f



     


 

  ( )( ) 2( ) ( ) exp 1 2 ( )
t

t

t

ts t
s t tt

x t E e u C ds e U x k t W W
  


   






               
        V  

 
 

Case 3: The optimal time t
  corresponds to the present timet , and  

  ( )x t U x  V  

 
Consequently, from the three previous cases, we deduce the value of ( ).x tV   
 

Finally, the American optimal time T   is determined by: 
 

  inf [0 ] ( )t tT t T P t U P   
 
  

     V
 

 

Therefore, we can check that  ( )t tP t U P V  if and only if: 

 

,
( ) 0, 0,tt P zE f

T t 

          

 

Thus, we have:  

  0inf [0 ] , , , , , , , ,t C PT t T P l t FCF k g RA RA    
 
  

   
 

where CRA  and PRA denote respectively the parameters characterizing the risk aversions to 

the free cash flows and the real estate asset and where  0, , , , , , ,C Pl t FCF k g RA RA   is 

determined from optimality condition of 0 being optimal for the first problem (see Section 4). 
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4.2.3. The American option problem for the CRRA case 
 

For the CRRA case, we can give explicit conditions on the current value tP  of the real estate 

asset to determine the American optimal time T  . In Appendix, we prove that ( )x tV has 

indeed an explicit value and that the price tP  has to be compared with the value: 

     

 
1

11(1 ) ( )
10

21
2

(1 )

11 ( ) 1

CPc

P

k g t
P

CP P P

FCF
e

k




     

  


  
        

 

 

Previous formula allows getting explicit relations between the optimal selling time T 
 and 

various parameters such as the relative risk aversions C  and P , the volatility   and the 

initial cash flow value 0FCF . 

 

5. Compensating variations of the three optimal strategies and the buy-and hold one 

The ratio of expected utilities characterizes the investor’s choice behaviour but it is only a 
qualitative criterion since utilities are defined up to affine transformations. In what follows, 
we use instead a quantitative index of investor's satisfaction based on the standard economic 
concept of compensating variation. The compensating variation (CV) is a measure of utility 
change. It is the amount of money required to reach the initial utility when a change occurs in 
prices or in the market. CV can thus be used to find the effect of changes on the net welfare 
(of an agent or of a portfolio). As illustrated in de Palma and Prigent (2008, 2009), the notion 
of CV is very useful to evaluate the monetary loss of not having the “best” portfolio. The 
utility loss from not having access to a “better” portfolio is provided by the compensating 
variation measure. If an investor with risk aversion   and initial investment V0 faces a choice 

between two (random) horizons (1)T  and (2)T , he has to compare the two expected utilities 

( ) 0[ ( ); ]iT
E U V V . Assume that horizon (2)T  provides higher utility than maturity (1)T . If the 

investor selects maturity (1)T  instead of (2)T , he will get the same expected utility provided 

that he invests an initial amount 0 0V V such that:   

(1) ( 2 )0 0( ); ( );
T T

E U V V E U V V 
        

 
Therefore, this investor requires (theoretically) a monetary compensation that can be 

evaluated by means of the ratio 0 0/V V . This amount is in line with the certainty equivalent 

concept in expected utility analysis. It can be viewed as an implicit initial investment 
necessary to keep the same level of expected utility. 
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Recall also that, at any time t of the management period 0, ,T    the “portfolio” value is given 

by:  

,t t tV C P   

with 

 0 1 k g t
t

FCF
C e

k g
  
  
 

 
  

and 2
0 exp 1 2t tP P k t W    

  
  

      

We introduce the returns (1) (1) (2) (2)0 0 an/ /d 
T T T T

R V V R V V  . 

 

5.1. The compensating variation for the quadratic case 

Suppose that the investor’s utility U is of quadratic. Function U  is equal to: 
2

( ) ,  with >0.
2

v
U v v     

If we fix the level of risk aversion  , then relation (1) (2)0 0[ ( ); ] [ ( ); ]
T T

E U V V E U V V   is 

equivalent to: 

(1) (1) (2) (2)

2
2

0 0 0 0
2 2= .

2 2T T T T
V E R V E R V E R V E R

                  

 
The previous relation provides the expression of the compensating variation for the quadratic 
case, through the resolution of the following polynomial equation: 

(1) (1) (2) (2)

2 220 0-  + 0,
2 2T T T T

V V
x E R xE R E R E R

                  

where x denotes the possible values of the compensating variation 0 0/ .V V  Set: 

 (1) (1) ( 2) ( 2)

2
0 2

0
2 -2 .

2T T T T

V
E R V E R E R E R

                    
 

Then, we deduce: 

(1)

(1)

2

0

0 0

.T

T

E RV

V V E R

    
  

 

Since the relative risk aversion is increasing for the quadratic case, it is not surprising that the 

compensating variation depends on the wealth level 0.V   

 

5.2. The compensating variation for the CRRA case 

Suppose that the investor’s utility u and U are of CRRA type. Function u and U are 
respectively equal to: 
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We have:  
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Then, relation  

*

0 0 0 00 0
( , ) ( , ) ( , ) ( , )

T Ts t s t
t ts se u FCF FCF ds e U P P e u FCF FCF ds e U P P           

 
is equivalent to 
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which yields to a linear relation between 0FCF  and 0P . 

 
In that case, several additional conditions can be imposed to determine the compensating 
variations. For example: 
 

1) We can adjust the initial free cash flow 0FCF  and fix the initial index price: 00P P . 

2) We can adjust proportionally both the initial free cash flow 0FCF  and the initial index 

price. In that case, we have:  

0
0

0

0

0 0

0
0 0  with 

V FCF P
V

V FCF
C P

P
F F     

Then, we deduce that the compensating variation 0

0

V

V
 when the investor selects the 

maturity T  instead of the optimal one T   is given by: 
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For the special case where C P    , the following relation provides the expression of 

the compensating variation for the CRRA case: 
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  (20) 

 
 
In what follows, we numerically illustrate the CV for the CRRA case, according to the values 

of the parameter P  in the cases where C P   (see eq. 20) or when 0C  . Moreover, we 

consider the parameter values of the numerical cases 1 and 2. 
 

6.2.1° - The relative risk aversions are smaller than 1  

The compensating variation increases with the risk aversion as illustrated on Figure 7, where 
Figure 7a refers to the numerical case 1 and Figure 7b to the numerical case 2. The 

corresponding T   are respectively 9.13, 14.20 and 19.32 (in 7a) and 16.11, 18.07 and 19.97 
(in 7b). 
 

   
a. Case 1     b. Case 2 
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Fig. 7. Compensating variation for very small RRA ( 0C  ) 

 
The compensating variation increases with the risk aversion. They are nearly the same in the 
case when C P  . 

6.2.2- The relative risk aversion to the real asset P  is higher than 1  

In such a case, we have to set 0C   to get non degenerated solutions (since the free cash 

flows are deterministic).  

The effects of the RRA on T  appears with standard error around 30%. Figure 8 illustrates the 
compensating variations for moderate relative risk aversions for the first numerical case. The 

optimal time to sell ( )PT   are (5) 19.10T   , (6) 16.00T    and (7) 13.80T   . The 

compensating variations can be very high in that case. Note that the results for the second 
numerical case are quite similar to those of the first numerical case one presented here.  

 

 
Fig. 8. Compensating variation with 30%   for medium RRA P  ( 0C  ) 

The higher the RRA, the smaller T   and the higher the compensating variations. We obtain 
the same effects when increasing the standard deviation for a given RRA. This is illustrated 
on figure 9, where the RRA is set to 7. 
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Fig. 9. Compensating variation for medium RRA 7P   ( 0C  ) 

 
 

6. Conclusion 

This paper emphasizes the impact of the real estate market volatility on optimal holding 
period. For this purpose, the investor is assumed to be risk-averse, which is an usual 
assumption when dealing with portfolio optimization but not in the standard real estate 
literature. The investor is also assumed to consume his free cash flows along the time period. 
We investigate several kinds of optimal times to sell, illustrating their sensitivities to real 
estate parameters and risk aversion level. Note in particular that, in the CRRA case, we 
provide a quite explicit solution of American optimal time to sell, extending previous results 
which correspond only to the no risk aversion case. Our findings show that, for usual 
parameter values for the real estate markets, the optimal times to sell are increasing with 
respect to weak risk aversions while, for high risk aversion levels, it is the converse. Finally, 
we evaluate the monetary loss of not choosing the “best” optimal time to sell (the so-called 
compensating variations). We show that this loss can be severe which emphasizes that the 
optimality of the holding period is crucial when dealing with real estate investment. 
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Appendix: The American case T*** for the CRRA case 
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Consequently, we have three cases: 
 

Case 1. The real estate asset value x is smaller than tP . 

Then the optimal time corresponds to the maturity T  and the value function ( )x tV  is given 
by: 
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Case 2. The asset value lies between the two values tP and tP . 

The optimal solution *
t  corresponding to a null first derivative is given by: 
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Case 3. The asset value is higher than tP . 

Then, the optimal time *
t is equal to the present time t itself. In that case, we get: 
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Consequently, the American optimal time is determined by:  
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For 0C P     (linear case), we recover the lower bound 
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Using standard results about the first time ( )m
yT  at which a Brownian motion with drift ( )mW  
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       a. Case 1       b. Case 2 
 

Fig 1. Quadratic utility, optimal time T   with respect to risk aversion   
 

 

 
Fig 2. Case 1 - condition for the existence of the analytical for T   
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Fig 3. PER limits for the case 1 as a function of g   
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Fig 4. Expected utility as a function of the risk aversion, first numerical example 

Small values of   

 
 
 

 
Fig 5. PER limits and expected utility for the numerical example 1 - w.r.t. the risk aversion,  

first numerical example 0C   

 
 

    
 

Fig 6. T   as a function of volatility, first numerical example, 0C    
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Abstract 

 
This paper deals with real estate portfolio optimization when investors are risk averse. In this 
framework, we examine an important decision making problem, namely the determination of 
the optimal time to sell a diversified real estate. The optimization problem corresponds to the 
maximization of a concave utility function defined on both the free cash flows and the 
terminal value of the portfolio. We determine several types of optimal times to sell and 
analyze their properties. We extend previous results, established for the quasi linear utility 
case, where investors are risk neutral. We consider four cases. In the first one, the investor 
knows the probability distribution of the real estate index. In the second one, the investor is 
perfectly informed about the real estate market dynamics. In the third case, the investor uses 
an intertemporal optimization approach which looks like an American option problem. 
Finally, the buy-and-hold strategy is considered. For these four cases, we analyze in particular 
how the solutions depend on the market volatility and we compare them with those of the 
quasi linear case. We show that the introduction of risk aversion allows to better account for 
the real estate market volatility. We also introduce the notion of compensating variation to 
better measure the impacts of both the risk aversion and the volatility. 
 
Key Words Real estate portfolio, Optimal holding period, Risk aversion, Real estate market 
volatility. 
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