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Abstract

The computation of Value at Risk has traditionally been a troublesome
issue in commercial real estate. Difficulties mainly arise from the lack of
appropriate data, the non-normality of returns, and the inapplicability of
many of the traditional methodologies. As a result, calculation of this risk
measure has rarely been done in the Real Estate field. However, following
a spate of new regulations such as Basel II, Basel III, NAIC and Solvency
II, financial institutions have increasingly been required to estimate and
control their exposure to market risk. As a result, financial institutions
now commonly use “internal” Value at Risk (V aR) models in order to
assess their market risk exposure. The purpose of this paper is to esti-
mate distribution functions of real estate V aR while taking into account
non-normality in the distribution of returns. This is accomplished by the
combination of the Cornish-Fisher expansion with a certain rearrange-
ment procedure. We demonstrate that this combination allows superior
estimation, and thus a better V aR estimate, than has previously been ob-
tainable. We also show how the use of our rearrangement procedure solves
well-known issues arising from the monotonicity assumption required for
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the Cornish-Fisher expansion to be applicable, a difficulty which has pre-
viously limited the useful of this expansion technique. Thus, practitioners
can find a methodology here to quickly assess value at risk without suf-
fering loss of relevancy due to any non-normality in their actual return
distribution. The originality of this paper lies in our particular combina-
tion of Cornish-Fisher expansions and the rearrangement procedure.

Keywords: Value at Risk, Risk Measurement, Real Estate Finance,
Cornish-Fisher Expansion, Risk Management, Rearrangement Procedures
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1 Introduction
The stock market crash of 1987 triggered the development of new risk measures.
This was the first major financial crisis in which practitioners and academicians
became concerned with the possibility of global bankruptcy. The crash was so
improbable given then standard statistical models that quantitative analysts be-
gan to question the appropriateness of their techniques. Numerous academics,
proclaiming that the crisis could easily reoccur, called for reconsideration of all
such risk models. It had become obvious that the possibility of extreme events
occurring required much greater examination. Limitations of traditional risk
measures were acknowledged, with improved measurement of risks for a major
decline in asset value having become an urgent task. There was a recognized
need for greater reliance on a risk measure considering the entire return distri-
bution of a portfolio. During the 1990s, a comprehensive new risk measure did
emerge: Value at Risk, commonly known by the acronym V aR. Practitioners
and regulators developed and then increasingly adopted the V aR measure in
their subsequent risk analyses.

Informally, value at risk is the largest percentage loss with a given probability
(confidence level) likely to be suffered on a portfolio position over a given holding
period. In other words, for a given portfolio and time horizon, and having
selected a confidence level, α ∈ (0, 1), V aR is defined to be that threshold value,
assuming no further trade, such that the probability that the mark-to-market
loss in the portfolio exceeds this V aR level is exactly the preset probability
of loss α.1 Thus, V aR is the quantile of the projected distribution of losses
over the target horizon, in that if α is taken to be the confidence level, V aR
then corresponds to the α quantile.2 By convention, this worst loss is always
expressed as a positive percentage in the manner indicated. In formal terms,
then, if we take L to be the loss, measured as a positive number, and α to be
the confidence level, then V aR can be defined as the smallest loss - in absolute
value - such that:

P (L > V aR) ≤ α. (1)

A more detailed definition of V aR can be find in Jorion (2007), Acerbi (2002)
or Bertrand & Prigent (2012).3

The crucial step in the worldwide adoption of V aR was the Basel II Accord
of 1999, which has resulted in nearly complete adoption of that measure (Basel
III must be applied by 2019). More recently, Solvency II regulations (for insurers
in Europe) have proposed V aR as a reference measure in determining required

1Note that V aR does not give any information about the likely severity of loss by which
its level will be exceeded.

2See Appendix A for the formal definition of a quantile function, the inverse of a distribution
function.

3In terms of gains rather than losses, the V aR at confidence level α for a market rate of
return X whose distribution function is denoted FX(x) ≡ P [X ≤ x] and whose quantile at
level α is denoted qα(X) is:

−V aRα(X) = sup {x : FX(x) ≤ α} ≡ qα(X).
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capital. The Basel Accord requires banks to recompute V aR periodically and
to always maintain sufficient capital to cover those losses projected by V aR.
Unfortunately, there exists more than one measure of V aR, since volatility, a
fundamental component of V aR, remains latent. Therefore, banks must make
use of several V aR models - at least for backtesting purposes - and so compute
a range of prospective losses.

In this paper, we do not directly address V aR’s appropriateness as a risk
estimator, nor the adequacy of this measure for risk budgeting purposes. It
suffices that regulators have seen fit to choose the V aR measure for required
economic capital calculations, and that its computation is mandatory for all
regulated practitioners. V aR is thus an essential research subject and of con-
siderable interest to a broad spectrum of academics.

Methods to compute V aR or to determine distribution quantiles have al-
ready been the subject of considerable research, following V aR’s introduction
into current banking practice. We note some fundamental articles on V aR
assessment and methods of its determination, among them Monte Carlo sim-
ulations: Pritsker (1997); Johnson transformations: Zangari (1996a); Cornish-
Fisher expansions: Zangari (1996b) and Fallon (1996); the Solomon-Stephens
approximation: Britten-Jones & Schaefer (1999); saddle-point approximations:
Feuerverger & Wong (2000); Fourier-inversion: Frolov & Kitaev (1998); and
extreme value theory: Longin (2000).

V aR has been the subject of numerous papers in real estate, but they have
primarily focused on listed (i.e. securitized) real estate and not direct commer-
cial real estate.4 V aR for securitized real estate relies on the same methods as
those used for ordinary stocks and bonds. Zhou & Anderson (2012) concentrate
on extreme risks and the behavior of REITs in abnormal market conditions.
They find that estimation of the risks requires different methods for different
stocks and REITs. Cotter & Roll (2010) study REIT behavior over the past
40 years, highlighting the non-normality of REIT returns. They compute VaR
(called risk of loss in their paper) for the Case & Shiller index, following three
methods that do not rely on Gaussian assumptions, these being the Efficient
Maximization algorithm, the Generalized Pareto Distribution method, and the
GARCH model. Liow (2008) uses extreme value theory to assess V aR dynamics
of ten major securitized real estate markets, allowing one to evaluate the risk
of rare market events better than would be possible using traditional standard
deviation measures.

Literature focusing on V aR in the context of direct real estate investment (or
funds) is sparse. Nonetheless, some studies do concentrate on risk management
and assessment in real estate. Booth et al. (2002) examine risk measurement
and management of real estate portfolios, suggesting that practical issues force
real estate investors to treat real estate differently from other asset classes. The
report focuses on the difference between symmetric measures, such as standard
deviation, and downside risk measures, such as V aR. Their work concentrates
on all risk measures used in real estate, thus constituting a survey of then-

4For instance, the former encompasses REITs.
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current real estate risk measures. Gordon & Tse (2003) consider V aR as a
tool to measure leveraged risk in the case of a real estate portfolio. Debt in a
real estate portfolio is a traditional issue much studied in real estate finance.
Their paper demonstrates that V aR allows better assessment of such risk. In
particular, traditional risk-adjusted measures (e.g., the Sharpe or Treynor ratio
as well as Jensen’s alpha) suffer from a leverage paradox. Leverage adds risk
along with potential for higher returns per unit of greater risk. Therefore,
the risk/return ratio does not change noticeably and so does not constitute an
accurate tool by which to measure the risk inherent in debt. Contrarily, V aR
is quite a good tool for studying leveraged risk. Brown & Young (2011) focus
on a new way to measure real estate investment risk using spectral measures.
They begin by refuting the assumption of normally distributed returns, whose
adoption serves to flaw forecasts and decisions. Interestingly, V aR is not their
selected measure; instead, an Expected Shortfall technique is adopted.

The limited research focusing on direct commercial real estate risk, in spite
of the increasing interest in the topic, is likely due to both a lack of data from
the commercial real estate sector and to issues arising from non-normality of
returns. Limited data for this sector is one of the primary obstacles to reliable
V aR computation. Either you invest in listed real estate and it is quoted daily
with sufficient data available to compute V aR for your portfolio, or you invest in
direct real estate and you deal with small data sets. This is particularly true in
commercial real estate, in which investment is largely done by large institutions.
The real estate market is thus comparable to the private equity market, where
indices are created from small numbers of transactions. Any real estate property
index attempts to aggregate real estate market information in order to provide
a representation of underlying real estate performance. However, observation is
generally conducted monthly in the best of cases, else quarterly, semi-annually,
or sometimes even annually: it has largely to do with the sector under consider-
ation. The residential field, where many transactions are observable, frequently
features a monthly index. Commercial real estate (e.g., offices, shopping cen-
ters etc.) faces greater difficulty in regularly delivering data, and the indices are
consequently of longer periodicity. To determine V aR of a real estate portfolio
at threshold 0.5% (as requested by the Solvency II framework) using the historic
approach, a minimum of 200 values are needed, which represents 17 years even
for a monthly index. With that number of needed observations, V aR consid-
erations are frequently irrelevant, since this requirement typically exceeds the
recorded history of the index. Hence, it is necessary to use other methods in
order to determine V aR for direct commercial real estate.

The non-normality of real estate return distributions is another perplexing
issue for V aR computation. This point has been ably demonstrated by Myer &
Webb (1994), Young & Graff (1995) and Byrne & Lee (1997). Recent studies
such as Lizieri & Ward (2000), Young et al. (2006) and Young (2008) show that
real estate returns usually exhibit non-normal returns. These works focus mainly
on Anglo-Saxon economies, but similarities in real estate return distributions
are found elsewhere. Real estate returns typically lean to the left (skewness)
and exhibit fat tails (leptokurtosis). The distribution used to estimate V aR of a
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portfolio needs to be determined from such return distributions or corresponding
sector indices. Nonetheless, an inappropriate normality assumption is regularly
adopted in order to determine V aR, mainly because it allows quick and easy
computation.

Both the lack of data and the non-normality issues which must be considered
when determining commercial real estate V aR constitute the principal motiva-
tion for our study. The issue of Solvency II regulation (European controls on
insurers) is particularly interesting. These regulations base capital requirements
on V aR estimation, and propose a standardized approach. Nonetheless, these
authorities leave open the possibility of building further in-house (“internal”)
models. Application of their standard model to real estate V aR estimation
leads to a required capital of 25% for typical real estate investments in Europe.
This calculation, however, was made using the IPD UK Monthly Property Index
Total return, which then only applies to the UK, even though the resulting regu-
lations concern all of Europe. The reasons are both that this index is published
monthly (which we saw is frequent in real estate) and that this index is one of
the few reliable commercial indices available in Europe. The committee recog-
nizes the non-normality of real estate returns, but nonetheless does not attempt
to more reliably estimate required capital for real estate. This is in part because
they identify a lack of data among other difficulties in computing V aR. While
the regulators recognize the liberties taken in their analysis, they make little
effort to provide solutions or answers: “All distributions of property returns are
characterized by long left fat-tails and excess kurtosis signifying disparity from
normal distribution. [. . .], albeit the methods do not eliminate the inherent
bias.” The committee also recognizes its conservatism in using the total return
index as a basis for calculation, since this inherently assumes that rental yield
earned is re-invested at a similar rate. In sum, regulators admit the various
inadequacies and imperfections in their recommendations, but in the absence
of better data and because of the low proportion of real estate portfolios held
by insurers in Europe, they do not attempt to improve on their preliminary
work. The present effort is meant to be an advancement on this piece of reg-
ulatory analysis, though the approach taken here applies equally well to other
regulations based on V aR (or quantile) estimation.

While the regulators suggest applying 25% V aR to all European countries, as
historically computed using the U. monthly total return index, this conclusion,
as they concede, is not much different than the one that would be obtained under
an inappropriate Gaussian assumption. In view of this, we seek V aR methods
that explicitly consider the non-normality of real estate returns in performing
V aR computations, while still not relying on large data sets. This is indeed
what the Cornish-Fisher expansion accomplishes. The expansion uses moments
of orders higher than two, and thus deals with asymmetric, non-normal distri-
butions. In short, the Cornish-Fisher approximation transforms naïve Gaussian
quantiles according to the skewness and kurtosis coefficients taken to character-
ize the true distribution. Proper use of the Cornish-Fisher expansion needs only
avoid one important pitfall: the formula is valid only if skewness and kurtosis
coefficients of the risk distribution meet a particular constraint. In practice, this
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constraint is not usually treated, but here we employ a rearrangement proce-
dure to remedy this problem, applying the technique in a commercial real estate
context.

To the best of our knowledge, the use of Cornish-Fisher expansion to de-
termine V aR in real estate has not been the subject of extensive research. No
study focuses solely on Cornish-Fisher methods in a direct real estate context.
Lee & Higgins (2009) do use Cornish-Fisher expansion in real estate, arguing
that the Sharpe performance formula neglects two important characteristics of
real estate returns: non-normality and autocorrelation. They then apply the
Cornish-Fisher expansion to adjust the Sharpe ratio so as to account for this
non-normality. Farrelly (2012) presents a study that focuses on measuring the
risk of an unlisted property fund using a forward-looking approach. Among
other relevant analysis, the author considers moment measurements of orders
higher than two (so that asymmetry is treated) by using the Cornish-Fisher
expansion. Following these authors, we motivate our paper by a need for better
V aR assessments, but in the direct real estate field.

Studies examining the best methods to compute V aR in various other con-
texts and which then consider the Cornish-Fisher method among others do exist
in greater numbers. Pichler & Selitsch (1999) compare five V aR methods in the
context of portfolios and options, mainly: Johnson transformations, Variance-
Covariance, and the three Cornish-Fisher-approximations of the second, fourth
and sixth order, respectively. They conclude that a sixth-order Cornish-Fisher
approximation is best among the approaches treated. Mina & Ulmer (1999)
compare Johnson transformations, Fourier inversion, Cornish-Fisher approxi-
mations, and Monte Carlo simulation, concluding that Johnson transformations
do not constitute a robust technique. Monte Carlo and Fourier inversion, in-
stead, are robust, while the Cornish-Fisher approach, though fast, is a bit less
robust, particularly when the distribution is far from normal, this being due to
the aforementioned possible non-monotonicity of the Cornish-Fisher expansion.
Feuerverger & Wong (2000) focus on when to use a Cornish-Fisher expansion
in comparison to Fourier inversion, saddle point, and Monte Carlo approaches.
They propose an extension of the Cornish-Fisher method which includes higher-
order terms. Jaschke (2001) concentrates on properties of the Cornish-Fisher
expansion and its underlying assumptions in the context of V aR, with particu-
lar focus on non-monotonicity of the distribution function, when convergence is
then not guaranteed.5 Jaschke discusses how the conditions for its applicabil-
ity make the Cornish-Fisher approach difficult to use in practice. However, he
demonstrates that when a data set obeys the required conditions, the accuracy
of the Cornish-Fisher expansion is generally more than sufficient for one’s needs,
in addition to being faster than other approaches.

In summary, to estimate V aR of direct commercial real estate and unlisted
property funds, we use a Cornish-Fisher expansion together with a rearrange-
ment procedure ((Chernozhukov et al., 2010)). This method explicitly accounts
for asymmetry and fat-tailed characteristics of direct real estate returns. We

5See also the chapter (by Jaschke and Jiang) of (Härdle, 2009) for a detailed presentation.
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thus improve on both traditional models and that of regulators (the so-called
“standard model”). Consequently, this paper contributes to extant literature by
employing a method not based solely on the first two statistical moments, and
which has particular pertinence given the current regulatory environment, i.e.
recent regulations that base capital requirements on V aR.

The remainder of the paper is organized as follows. Section 2 introduces
the Cornish-Fisher expansion and discusses technical points, while Section 3
implements the model and section 4 then concludes the paper.

2 Gaussian Value at Risk (VaR) and the Cornish-
Fisher Adjustment

2.1 VaR with the Normality assumption
After a brief review of V aR in the Gaussian case, we analyze the Cornish-Fisher
(CF) expansion and its implications for V aR computations. If the returns were
normal, we would know the quantiles of the distribution exactly. Let X be
a random variable that models returns distributed normally with mean µ and
standard deviation σ, i.e. X ∼ N(µ, σ2). This random variable can be written as
a function of the standard normal variable z ∼ N(0, 1) as follows: X = µ+Zσ.
We denote by zα the standard Gaussian quantile at threshold α, which is to
say, Fz(zα) = α, where F is the cumulative distribution function (cdf) in the
standard normal case. The quantile qα for X is then identified by FX(qα) = α,
for the corresponding distribution function FX of the normal variable X and
can then be written as qα = µ + zασ. In terms of returns X, one then has
V aR = −qα, assuming an α such that qα is negative.

2.2 VaR without the normality assumption: the Cornish-
Fisher expansion

Cornish & Fisher (1938) established the expansion that bears their names. In
the case of smooth random variables, it is possible to obtain an explicit ex-
pansion for any standardized quantile of the true distribution as a function of
the corresponding quantile of the unit normal approximation introduced above.
This CF expansion is then a simple polynomial function of the corresponding
unit normal quantile, where the coefficients of each resulting term are functions
of the moments of the true distribution under consideration.6 For instance,
denoting by zα and zCF,α the Gaussian and the resulting Cornish-Fisher quan-
tiles, respectively we obtain the following expression for the normalized Cornish-
Fisher quantile:7

zCF,α = zα+
1

6
(z2α−1)S+

1

24
(z3α−3zα)(K−3)− 1

36
(2z3α−5zα)S2,∀α ∈ (0, 1, (2)

6This approximation is based on the Taylor series developed, for example, in Kendall et
al. (1994) and Stuart & Ord (2009).

7At the third order, the approximation is: ∀α ∈ (0, 1), zCF,α = zα + 1
6
(z2α − 1)S.
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where S and K denote the skewness and kurtosis coefficients, respectively of
the true distribution (see the definition of S and K in Appendix B).8 The
corresponding modified Cornish-Fisher quantile is then just:

qCF,α = µ+ zCF,ασ, ∀α ∈ (0, 1), (3)

and so the expression for V aR is of course simply

V aRCF,α = −qCF,α∀α such that qCF,α < 0. (4)

The Cornish-Fisher expansion thus aims to approximate the quantile of a true
distribution by using higher moments (skewness and kurtosis) of that distribu-
tion to adjust for the distribution’s non-normality. Since the moments of the
true distribution can be estimated in standard fashion by the sample skewness
S and sample kurtosis K coming from data, these can then be substituted into
equation (2) so as to estimate the unknown quantiles (the V aR) of the true
distribution.

Cornish-Fisher expansion thus allows one to consider higher-order character-
istics of the distribution when doing quantile computation, so that risky assets
exhibiting non-normal distributions can be accurately treated. The Cornish-
Fisher approach thus offers several advantages. First, it is comparatively easy
to implement. Second, it allows for skewness and kurtosis in the V aR esti-
mation, unlike the usual Gaussian approximation. Note that if the true dis-
tribution happened to indeed be normal, the Cornish-Fisher expression would
simply reduce to the usual Gaussian expression. Third, the approach makes no
assumption about the time scale and so can be repeated through time.9 This
renders the approach particularly relevant for, say, regulatory purposes. Indeed,
the technique is independent of the nature of the underlying distribution and so
of its evolution, and thus can be used whatever the changes in this distribution
as the result of new, non-systematic events. This point is fundamental for risk
management where, exactly as in accounting, one of the basic criteria is the
“consistency principle”, requiring that a company must be able to use the same
risk measurements methods from period to period. Fourth, estimation using the
Cornish-Fisher expansion does not require a large amount of data. For V aR
computation, the relevant quantiles need to be estimated. With a sufficiently
large data set, one could utilize a straightforward empirical quantile; however,
in commercial real estate the available data is rarely sufficient for this task: the
0.5% V aR of Solvency II regulation requires at a very minimum 17 years of data
(17 years = 204 months). If the return series is skewed and/or has abnormal
tails (kurtosis), Cornish-Fisher estimates of V aR is the more appropriate than
traditional methods since despite its need to determine skewness and kurtosis,
the method only requires modest amounts of data.

As suggested, the Cornish-Fisher approach leads to approximations closer to
the true law than does the traditional Gaussian approach, often to a dramatic

8Notice that in presence of a Gaussian distribution (S = 0 and K = 3), equation (2)
reduces to the Gaussian quantile.

9However, exact distributions have advantages as well: they enable Monte Carlo simula-
tions and so allow the direct computation of V aR.
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degree. This is illustrated in figure 1 below for a chi-squared distribution with 4
degrees of freedom. Obviously, the CF methodology cannot give better results
than does the true distribution, but it does have the benefit of approaching the
true distribution far more closely than does the Gaussian approximation. By
showing how close to the theoretical distribution the Cornish-Fisher can be, one
begins to appreciate the power of this tool.

Figure 1: The Cornish-Fisher approximation for a chi-squared distribution with
4 degrees of freedom µ = 4; σ2 = 8; S = 1.41; K = 6

2.3 A Pitfall of the Cornish-Fisher Approach and its So-
lution

Although the Cornish-Fisher expansion has proven to be a useful technique,
there are constraints on the permitted values of the true distributions’ moments
in order that the CF approximation itself yields a true distribution. Relation
(2) in general allows a non-monotonic character to zCF , which is to say that
the true distribution’s ordering of quantiles is not preserved. This violates a
basic condition that must be met in order that the resulting CF approximation
constitutes a proper cdf. Barton & Dennis (1952), Draper & Tierney (1973)
and Spiring (2011), among others, study the domain of validity for the Cornish-
Fisher expansion. Monotonicity requires the derivative of zCF,α relative to zα to
be non-negative. This leads to the following constraint, which implicitly defines
the domain of validity (D) of the Cornish-Fisher expansion:10

S2

9
− 4

(
K − 3

8
− S2

6

)(
1− K − 3

8
− 5S2

36

)
≤ 0. (5)

Thus, if (S,K) ∈ D, then the CF quantile function is monotonic, but if it is
not, the Cornish-Fisher method is inapplicable. Because of this, Chernozhukov

10For example, inequality (5) implies a kurtosis coefficient higher than 3 (a positive excess
of kurtosis), which indicates a leptokurtic distribution. Thus, unadjusted CF expansion is not
appropriate in the presence of thin tails.
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et al. (2010) propose a procedure called increasing rearrangement in order to
restore monotonicity. The procedure serves to sort the function of interest (see
appendix D). As these authors demonstrate, the rearrangement procedure alters
non-monotone approximations so that they become monotonic. In our problem,
this corresponds to an ascending sorting of the quantile function qCF,α.

Consider some distribution with a skewness coefficient of 0.8 and a kurto-
sis of 2. These parameters correspond to a distribution being thin-tailed and
right-skewed, respectively. Since these parameters do not belong to the domain
of validity D, the zCF,α quantile function is not monotonic. Applying the re-
arrangement procedure to this quantile function, though, we obtain z̃CF,α, the
corrected Cornish-Fisher transformation of the Gaussian quantiles. Focusing on
probabilities of less than 25%, figure 2 shows the impact of this procedure. Note
that the computation of the non-rearranged CF probability density function is
not always even possible since it would result in negative probabilities.

Figure 2: The rearrangement procedure (α < 25%)

Observe, also, that the discrepancy between the two quantile functions, the
rearranged and the non-rearranged, is most noticeable for the smallest proba-
bilities, which are the most important ones for V aR computation.11

The power of rearrangement is further illustrated, this time for a chi-squared
distribution with 1 degree of freedom. In Figures 3 and 4 we can observe how
the non-rearranged Cornish-Fisher quantiles function results in a rather poor

11See the first figure presented in Chernozhukov et al. (2010). Note that the non-rearranged
quantile function encountered might be even more severely non-monotonic (and therefore could
provide poorer approximations of the distribution function) than the one presented in figure
2. We note that z̃CF,0.001 = −1.4, whereas zCF,0.001 is clearly biased, being equal to −0.3.
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estimation of the ideal quantiles. On the contrary, the rearranged quantiles are
very close to the theoretical ones, clearly showing how the rearrangement can
improve the quality of the estimation. We thus see that the Cornish-Fisher ap-
proximation may provide a rather poor approximation of the quantile function
when rearrangement procedures are not used, and that the rearranged approxi-
mation then provides a much more satisfactory approximation to the theoretical
function than does the original approximation.

Figure 3: Comparison of the non-rearranged and rearranged Cornish-Fisher
quantile functions for a chi-squared distribution with 1 degree of freedom µ = 1;
σ2 = 2; S = 2.82; K = 15

Figure 4: A cdf and pdf comparison of the rearranged Cornish-Fisher procedure
for a chi-squared distribution with 1 degree of freedom µ = 1; σ2 = 2; S = 2.82;
K = 15

The improvement in accuracy seen in the above example is not a fluke, since
not only is rearrangement guaranteed to restore monotonicity of the approxima-
tion of the ideal distribution but it is also guaranteed to improve the accuracy of
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that approximation in comparison to the one achieved without rearrangement.
The argument is presented in Chernozhukov et al. (2010). The improvement
comes from the fact that, since the rearrangement results in monotonicity, it
necessarily brings the originally non-monotone approximations closer to the true
monotone target function.

3 A Commercial Real Estate Application
We study the IPD UK Monthly All Property Total Return Index from January
1988 to December 2010, which consists of 276 observations. By comparison, the
regulations the European authorities developed for real estate (Solvency II) were
based on the IPD UKMonthly Property Index Total return spanning 1987 to the
end of 2008, totalling 259 monthly returns. This IPD index is a valuation-based
index and is “like all indices” subject to criticism. Nevertheless, the limitations of
this specific index - e.g., its smoothness and reliability - are not further discussed
here, this not being the subject of our paper. Note that contrary to the work of
regulators in the context of Solvency, we apply desmoothing procedures to our
database. The desmoothing procedure12 we have used is the one introduced by
Geltner (1993), where we use a lag parameter of 0.5, corresponding to a lag of
two months.13 Our approach remains applicable, though, to most any kind of
index, assuming the first four moments can be estimated, with our objective in
this part merely being to impose our methodology on some commonly accepted
and well-understood index. In this sense, the IPD UK Monthly All Property
Total Return Index presents four advantages: monthly publication, reliability,
acceptance by practitioners, and substantial representation of its components
in institutional investors’ portfolios. Our objective in the following, then, is
to apply the Cornish-Fisher expansion in order to compute the V aR of UK
real estate total returns. We apply our described techniques to this database
and determine V aR at a 0.5% threshold, this threshold being, for instance, the
one required by solvency II regulations. The values calculated are annualized
monthly returns.

The index and corresponding returns on which the analysis is based are
presented in figures 5 and 6, clearly exhibiting both the 1990’s overconstruction
crisis and the subsequent subprime crisis.

12An extensive presentation of the desmoothing technique can be found in Geltner et al.
(2007) p.682. However, we note that the impact of the desmoothing is negligible in our case
because of offsetting impacts on each of the first four moments

13Index issues have already been discussed in the Solvency II calibration paper CEIOPS-
SEC-40-10, as well as in many articles; among others: Fisher et al. (1994), Edelstein & Quan
(2006), Booth et al. (2002) and Cho et al. (2003).
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Figure 5: The real estate index from January 1988 to December 2010

Figure 6: Real estate returns from January 1988 to December 2010

In order to determine V aR evolution, we need to choose an appropriate
bandwidth. This choice of bandwidth is not a priori determined, either statis-
tically or from a real estate viewpoint (e.g., by economic analysis, regulations,
etc.). The length of time does have to be large enough to enable moment com-
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putation. Standard valuation models use a 10-year cash flow period, but the
chosen length could be longer. For example, the Solvency II standard model for
real estate required capital is based on all the observations then available. Since
the purpose of our analysis is V aR for non-Gaussian distributions and not the
impact of window length, we do not study this point further here (but see ap-
pendix E). A 15-years period is used, being a compromise between the need for
sufficient data and the desire to exhibit the evolution of V aR over time. While
still allowing us to consider more than one business cycle, this choice enables us
to obtain results that are not overly erratic, as would be the case with smaller
windows.

Distributions of returns differ across periods, as illustrated in figure 7. In
addition to a curve corresponding to the entire period, there are also curves cor-
responding to three overlapping 15-years periods: the first 15-years period (Jan-
uary 1988 to December 2002), the middle 15 years (December 1991 to November
2006) and the last 15 years (December 1995 to December 2010).

Figure 7: Real estate return probability distribution functions according to 15-
years periods
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Figure 8: Real estate return cumulative distribution functions according to 15-
years periods

The middle 15-years period distribution is the most concentrated one, with
the high returns from the end of the 1980s and the lower returns from the
subprime crises not being incorporated. The distribution for the last 15-years
period is left-skewed, with highly negative returns (reflecting the subprime cri-
sis).14 These more recent events demonstrate how the naïve use of the Gaussian
model becomes completely inappropriate at crucial times. Accompanying de-
scriptive statistics of the empirical moments are presented in table 1.

Periods Mean S.D. S K Q1 Q2 Q3
Whole period
01/88-12/10 .0938 .1555 (.4483) 3.8172 .0301 .1074 .1814
1st 15-years
01/88-12/02 .1040 .1198 .3909 3.4127 .0347 .0935 .1654
Middle 15-years
12/91-11/06 .1234 .0843 .4991 4.5293 .0692 .1183 .1763
Last 15-years
01/96-12/10 .0923 .1537 (.9720) 4.8255 .0677 .1134 .1756

Table 1: Basic statistics of the database for various periods

Figure 9 and 10 show the 95% bootstrap confidence interval of the mean,
the standard deviation, the skewness coefficients, and the kurtosis coefficients

14This raises a questions concerning the window length of the data set chosen by regulators.
A shorter window length leads to higher skewness and kurtosis coefficients nearer the present,
since the subprime and mortgage crisis then have more weight.
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through time. In both graphs, the values represent computations based on
windows spanning the previous fifteen years periods. The means and standard
deviations are seen to be rather unstable. Mean returns are observed to exhibit
a W-type shape, with a small decrease till 2004, a solid increase up to 2007,
followed by a fall until 2009, and then a slow recovery. The evolution of the
standard deviation is nearly stable - though ever so slightly diminishing - before
the crisis in 2007. Afterwards, it rises strongly.

Figure 9: Mean and standard deviations according to 15-years periods, and their
95% bootstrap confidence intervals

In comparison, the evolution of S and K are a bit more variable. They
are nearly stable around the Gaussian values of 0 and 3, respectively, before
the subprime crises. However, changes are far more noticeable afterwards: the
distribution becomes highly left-skewed (S < 0) and fat-tailed (K > 3). To the
extent that it was not Gaussian, the distribution before the crisis appears to
have been slightly thin-tailed, but after 2008 it becomes dramatically so. At
about the same time, the kurtosis coefficient explodes in size.
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Figure 10: Skewness and kurtosis according to 15-years periods, and their 95%
bootstrap confidence intervals

As mentioned in Section 2 of this paper, use of the Cornish-Fisher expansion
is subject to a monotonicity condition. The latter is satisfied when skewness and
kurtosis coefficients belong to the domain of validity D, defined by inequality (5).
In particular, this condition is not satisfied any time kurtosis is lower than 3.
The combination of skewness and kurtosis coefficients found in the data leads
to a considerable period of invalidity. Without the rearrangement technique,
the Cornish-Fisher expansion would be possible only in two relatively small
periods: from November 2003 to April 2004 and from March 2008 to November
2008 (shown in figure 11).
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Figure 11: Skewness and kurtosis belonging to the domain of validity (D). The
function represented is set to 1 if (S,K) ∈ D and to 0 if (S,K) /∈ D

We compute the probability distribution function from the empirical data
for the first 15-years in figure 12 and for the last 15-years in figure 13 showing
in the same figure the rearranged Cornish-Fisher result and the Gaussian result
over the sample period.15 This allows us to demonstrate the power and the rele-
vancy of our proposed approach: clearly the Cornish-Fisher approach is closer to
the empirical law than is the Gaussian one. This comes from the improvement
resulting from the rearrangement: this technique brings non-monotone approx-
imations closer to the monotone target functions, as logically demonstrated in
Chernozhukov et al. (2010) (see appendix D).

15The halt in estimation is due to the lack of data required for kernel estimation.
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Figure 12: Probability distribution function of the 1st 15-years for the empirical,
the Cornish-Fisher, and the Gaussian distributions

Figure 13: Probability distribution function of the last 15-years for the empirical,
the Cornish-Fisher, and the Gaussian distributions

Given S and K for each 15-years rolling period, we next compute the
Cornish-Fisher correction of Gaussian quantiles in order to obtain V aR. Figure
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14 presents the results for the 0.5% thresholds, with their associated confidence
intervals.16 Figure 14 highlights how the corrected V aR (the Cornish-Fisher
V aR is denoted CF V aR in the graph) is different from the Gaussian one.
During the rise of the bubble in the 2000’s and then the subsequent collapse,
the difference between the two V aRs becomes quite noticeable: the corrected
one being lower before the crisis but much higher afterwards. This underlines
one of the advantages of the current approach: in periods of low risk, the V aR
obtained is lower than the Gaussian V aR, while to the contrary, when risk in-
creases, then so does V aR. This is completely in line with the idea that required
capital should be higher for riskier investments. In this sense, when real estate
risk increases (due to overproduction, strong increase of price, abnormal trans-
actions, etc.), the required capital ought to increase at the same time. This is
exactly what CF V aR accomplishes.

Another interesting point is to compare our results with those obtained by
regulators. Solvency II regulation requires required capital of 25% for real estate
investments. This value is based on the IPD UK Monthly Property Index Total
return over the whole available period with a threshold of 0.5%. Interestingly,
the valuation by regulators is close to that obtained with the Gaussian assump-
tion at the same 0.5% threshold on the most recent 15-years rolling period: 22%.
However, this is not the case for the CF V aR, which is much higher than the
Gaussian one, being around 31%, an increase of 24% compared to the regulator’s
calculus. This observation raises questions about the relevancy of the regulator’s
V aR estimation. Two suppositions can be entertained: either the regulators do
not care about correctly assessing real estate risk given the low proportion held
by investors or the regulators do not really understand the specificities of real
estate. In any case, the regulator’s result is in favour of the real estate industry
(because it undervalues the real risk) but to the disadvantage of real estate risk
management. Clearly, including moments of orders higher than two leads to
a more accurate V aR and subsequently to more accurate capital requirements
(be they lower or higher).

16There are two sources of risk in the confidence interval computation for Gaussian V aR:
randomness of mean and randomness of variance. Adding to these the randomness in the
skewness and in the kurtosis coefficients, we obtain four elements entering the calculus of the
corrected V aR. However, the 95% confidence interval of the corrected V aR is nonetheless
observed to be smaller than the Gaussian one. There are more sources of randomness, but
since these random variables correlate, the standard deviation of the V aR estimator is lower
all the same.
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Figure 14: 0.5% Gaussian and corrected Cornish-Fisher V aR in percentage ac-
cording to 15-years periods, with their corresponding 95% bootstrap confidence
intervals

4 Conclusion
The challenge of risk modelling is to adequately incorporate the distribution of
returns, since the under or overestimation of risk can alternatively lead to high
losses or to significant missed opportunities. The aim of this paper has been
to compute Value at Risk (V aR) for direct commercial real estate investment.
The existence of substantial skewness and kurtosis in monthly commercial real
estate returns, combined with the lack of data that the real estate industry
faces, results in a systematic mis-estimation of risk when using the conventional
V aR computation approach.

A key feature of our analysis has thus been to deal with the difficulties
for standard risk modelling posed by the specificities of commercial real estate
markets. In light of all the recent (Solvency, Basel) regulation that has followed
the subprime crisis, risk measurements - in particular V aR estimates - are in
great demand by the real estate industry, as well as by regulation authorities.
Yet, to date, little research has concentrated on V aR analysis - or more generally
on risk measurement - in the case of direct commercial real estate. This paper
fills this lacuna by employing an approach based on Cornish-Fisher expansions
- thus relying on higher order moments of returns - which results in an overall
improvement in real estate V aR computation, since the resulting technique
proves sensitive to the characteristics of the underlying true return distribution.
Our article thus contributes to the extant literature by proposing a new approach
to commercial real estate risk assessment.
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One possible weakness of the Cornish-Fisher approach is in its domain of
validity. This condition can be quite restrictive and may lead to wrong quantile
estimations when the required criteria is not fulfilled. In this case, the mono-
tonicity of the quantile function is not maintained, a mandatory condition for
any sort of cumulative distribution function computation. This limitation on
Cornish-Fisher expansions can be removed, though, by the use of rearrangement
procedures (sorting schemes) for the quantile function, thus resolving the non-
monotonicity issue. Here, we propose a methodology that combines Cornish-
Fisher expansion with a rearrangement procedure in order to accurately com-
pute real estate V aR.

The article applies the proposed methodology to a UK commercial real estate
database (IPD UK Monthly All Property Total Return Index). We demonstrate
that this index provides an example where Cornish Fisher V aR cannot be prop-
erly computed without the use of a rearrangement procedure. In examining the
evolution of the first four moments of the index’s distribution, we find that the
skewness and the kurtosis move strongly through time, especially during and
after the market collapsed. We are able to compare our results with those of
the European Solvency II (25%) regulatory analysis. As anticipated, we obtain
a higher V aR with the Cornish Fisher calculations than those of the regulators,
except in times when the markets were especially calm. Indeed, while calcula-
tion shows that in recent periods our Gaussian V aR remains close to the 25%
value obtained overall in the regulatory analysis, the corrected Cornish Fisher
V aR is more like 31%. We thus see that ignoring higher moment corrections to
V aR calculations can be of considerable consequence.

The Cornish-Fisher approach does not depend on any distributional assump-
tions and so may be the preferred choice when the distributional assumptions
required by other modelling approaches are likely to be violated, e.g. when
the return series does not follow the normal distribution assumed by numerous
formulations. Similarly, using our methods, we can obtain meaningful results
despite a relative paucity of data, which would render many other approaches
completely inapplicable. These advantages may argue for using our approach in
a more general risk management and assessment context. Hence, there are good
reasons for real estate practitioners, as well as banks and insurers, to implement
this method alongside other models when working in a real estate context, or
whenever data sets prove modest. The proposed approach can additionally be
used for regulatory purposes as a proxy for true VaR when conducting control
and backtesting procedures.

Finally, while our paper has limited the use of its techniques to the IPD
UK Monthly All Property Total Return Index for the class of public commer-
cial real estate assets found in the U.K., individuals with portfolios invested
in numerous other asset classes - such as private equity, arts, or hedge funds -
which exhibit common features to commercial real estate assets (i.e, little data,
abnormal distributions, etc.) may also profit from the use of our approach. It
should be possible and potentially quite interesting to apply our model to risk
comparisons among these various asset classes and then to apply this to optimal
portfolio choice. Risk managers with a need to develop appropriate models of
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risk should find a useful approach here, one yielding “internal models” applicable
to real estate, as well as to many other areas.
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A Appendix 1: Quantile Functions
The quantile function (or inverse cumulative distribution function) of the prob-
ability distribution of a random variable specifies, for a given probability, the
value which the random variable will fall below with that specified probability.
In fact it is an alternative to the probability density function (pdf).

LetX be a random variable with a distribution function F , and let α ∈ (0, 1).
A value of x such that F (x) = P (X ≤ x) = α is called a quantile of order α for
the distribution. Then we can define the quantile function by:

qα(X) ≡ F−1(α) = inf {x ∈ R : F (x) ≥ α} , α ∈ (0, 1).

The quantile function qα(X) thus yields the value which the random variable of
the given distribution will fail to exceed with probability α.

B Appendix 2: Skewness and Kurtosis
Given a probability distribution f(x) of the random variable X and a real-
valued function g(x), one defines the expectation E[g(X)] =

∫
g(x)f(x)dx, in

which case the first moment is µ = E[X], whereas the higher central moments
are then defined as µn = E[(X − µ)n]. The first task in almost all statistical
analyses is to characterize the location and variability of a data set. This is
captured by the moments of order one and two, usually called the mean µ and
the variance σ2 = µ2, respectively. A further characterization of the data often
includes the standardized moments of order three and four, called the skewness
γ1 = µ3/σ

3 and kurtosis β2 = µ4/σ
4, respectively. These last two measurements

further describe the shape of a probability distribution. We briefly recall the
significance of these two last parameters.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry.
A distribution, or data set, is symmetric if it looks the same to the right and
left of its center (which is then the mean µ). The skewness of any symmetric
distribution, such as a Gaussian one, is necessarily zero. Negative values for the
skewness coefficient indicate data that are skewed to the left whereas positive
values indicate that the data that are right skewed, with left-skewness meaning
that the left tail of the distribution is long relative to the right one.

Kurtosis refers to whether the data are peaked or flat relative to a normal
distribution. That is, data sets with high kurtosis tend to have a distinct peak
near the mean, then decline rather rapidly, but still have heavy tails. Data sets
with low kurtosis tend to have a flat top near the mean rather than a sharp
peak. The kurtosis formula measures the degree of this peakedness, where the
kurtosis of a Gaussian distribution turns out to be 3.
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Figure 15: Right skewed distribution (S = 1.75)

Figure 16: Fat tailed distribution (K = 9)

C Appendix 3: The Cornish-Fisher Procedure
The Cornish-Fisher expansion is a useful tool for quantile estimation. For any
α ∈ (0, 1), the upper αth-quantile of Fn is defined by qn(α) = inf {x : Fn(x) ≥ α},
where Fn denotes the cdf of ξn = (

√
n/σ)(X̄ − µ) and X̄ is the sample mean of
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i.i.d. observations X1, . . . , Xn. If zα denotes the upper αth-quantile of N(0, 1),
then, the fourth order Cornish-Fisher expansion can be expressed as:

qn(α) = zα+
1

6
√
n

(z2α−1)S+
1

24n
(z3α−3zα)(K−3)− 1

36n
(2z3α−5zα)S2+o(n3/2),

where S and K are the skewness and kurtosis of the observations Xi.
The Cornish-Fisher expansion is useful because it allows one to obtain more

accurate results than using the central limit theorem (CLT) approximation,
which would be just the zα defined in the body. A demonstration and example
of the greater accuracy that the Cornish-Fisher expansion brings compared to
the CLT approximation is reported in Barndorff-Nielsen & Cox (1989), p. 119.

D Appendix 4: The Rearrangement Procedure
This paper applies a procedure called rearrangement, or more precisely, increas-
ing rearrangement. We use this procedure to restore the monotonicity of the
Cornish-Fisher expansions. The procedure is briefly described here.17

A convenient way to think of the rearrangement is as a sorting operation:
given values of a data set, we simply sort the values in an increasing order. The
function created is the rearranged function.

Following Chernozhukov et al. (2010), we define the procedure more precisely
as follows. “Let χ be a compact interval. Without loss of generality, it is conve-
nient to take this interval to be X = [0, 1]. Let f(x) be a measurable function
mapping χ to K, a bounded subset of R. Let Ff (x) =

∫
χ

1 {f(u) ≤ y} du denote
the distribution of f(x) when X follows the uniform distribution on [0, 1]. Let

f∗(x) = Qf (x) = inf {y ∈ R : Ff (y) ≥ x}

be the quantile function of Ff (y). Thus,

f∗(x) = inf

{
y ∈ R :

[∫
χ

1 {f(u) ≤ y} du
]
≥ x

}
.

This function f∗ is called the increasing rearrangement of the function f .”
In our approach, this allows us to respect one of the basic conditions of

the probability distribution function: monotonicity. As a result, Value at Risk
becomes inversely proportional to the threshold, and so, as expected, one has
V aR0.5% ≥ V aR5%.

The rearrangement procedure also has the practical implication, demon-
strated by Chernozhukov et al. (2010), that the resulting rearranged estimate
has a smaller estimation error (in the Lebesgue norm) than does the original
estimate whenever the latter is not monotone. This property is independent of
the sample size and of the way the original approximation is obtained. Thus,

17In mathematics, the notion of rearrangement derives from the notion of permutation and
is reported in the work of Bóna (2004). Lorentz (1953) can also be consulted.
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the benefits of using a rearrangement procedure in our paper are both to ob-
tain estimates of the distribution satisfying the logically necessary monotonicity
restriction and also to obtain better approximation properties.

E Appendix 5: Comparison of Cornish-Fisher VaR
for Various Window Lengths

Here, we revisit the length of window choice. In figure 17 and 18, V aR of the
10, 11, 12.5, 14 and 15-years periods are represented simultaneously. Before the
middle of 2008, the longer the window, the higher is the V aR. After that date,
we observe the opposite effect. Modifications created by the window length are
qualitatively the same for the Gaussian and Cornish-Fisher V aRs.

Figure 17: Gaussian VaR for various window lengths
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Figure 18: Cornish-Fisher corrected VaR for various window lengths

The difference between these two approaches to V aR is stable whatever
the choice of windows. This illustrates that effects of window length is not
relative to the Cornish-Fisher expansion but to the V aR computation, and
more generally to distribution estimation. As mentioned previously, regulators
often fix the length exogenously, with a 10-year window being chosen in much
financial analysis.
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