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Abstract

Standard results about portfolio optimization suggest that the alloca-
tion to real estate in a mixed-asset portfolio should be around 15 − 20%.
However, the institutional investors share in real estate is significantly
smaller, around 7 − 9%. Many researches have addressed this point even
if as of today no consensus has emerged. In this paper, we built-up an
allocation model that can explain the empirical observed weights. For
this purpose, we account for the term structure of all standard financial
assets and also of real estate asset class (expected returns, volatilities and
correlations depending on the time to maturity). We propose a dynamic
portfolio optimization model that allows analyzing portfolio weights with
respect to the whole term structure modelling, due to its tractability and
its good fit when being adequately calibrated. In this framework, we pro-
vide explicit and operational solutions to the dynamic mixed-asset port-
folio allocation (cash, real estate, stock and bond). The results show that
accounting for investment horizon and mean-reverting dynamics allows
to better examine how portfolio allocations depend on both risk aversion
and investment horizon.
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1 Introduction

Mixed asset portfolio allocation consists usually in determining optimal weights
invested on cash, bonds, stocks and finally real estate assets. For both institu-
tional investors and academic researchers, it has been a very important topic
from many years (see e.g. Webb et al., 1986, 1987; Gold, 1986) and is still a
rather involved problem. Indeed, the determination of the optimal allocation
on real estate asset does not rise to a clear consensus, even almost all investors
agree that real estate can be an effective portfolio diversifier (see e.g. Hoesli et
al., 2004). Hoesli and MacGregor (2000) suggest that allocation on real estate
would be equal to about 15-20%. However, for instance, Fogler (1984) wonders
whether one can justify a 20% weight invested on real estate. Hudson-Wilson
et al. (2005) also deal with the rationality of real estate investment. Indeed, in
many countries, looking at the portfolios of institutional investors, the weight
invested on real estate is significantly smaller than 15-20%, as emphasized by
Clayton (2007) and J.P. Morgan (2007) who show that the allocation on real
estate is about 7.3% for the US and about 8.5% for the UK. Andonov et al.
(2013) also find that the allocations on stocks and bonds dominate the others
(about 75%) but the investment on alternative assets including real estate has
increased over time.1

Summarizing results in the literature about mixed-asset investment, Seiler
et al. (1999) show that real estate diversification ranges from 0% to 67%. Con-
sidering both public and private real estate in the mixed-asset framework (de-
pending on the direct real estate index chosen), Feldman (2003) also finds that
global real estate allocation ranges from 0% to 42%. Looking at the European
financial market, Fugazza et al. (2007) determine the optimal weights for risk-
averse investors, finding that the introduction of real estate assets in optimal
portfolios yields to weights lying between 12% and 44%. They emphasize that
“the welfare costs of either ignoring predictability or restricting portfolio choices
to traditional financial assets only are found to be in the order of 150-300 basis
points per year”. According to Rehring (2012), the difference between theoret-
ical weights and the low allocations to real estate in portfolios of institutional
investors is viewed as a puzzle in real estate research (see Chun et al., 2004). Lin
and Liu (2008) point out also the heterogeneity of investors facing real estate
returns and risk.As regards portfolio optimization, many empirical studies have

demonstrated how allocations between stocks, bonds and cash depend highly on
risk aversion. In particular, bond/stock ratios differ for conservative, moderate
or aggressive investors (see e.g. Brennan and Xia, 2000, de Palma and Prigent,
2009). Approaches to the portfolio allocation problem are usually based on
the standard model of Markowitz (1952) where the usual portfolio maturities

1Andonov et al. (2013) examine about 880 pension funds in the United States, Canada,
Europe, and Australia/New Zealand from 1990 to 2009. In 2009, the shares of these pension
funds are respectively equal to 47.1% on stocks, to 36.9% on bonds, and to 2.5% on cash while
the remaining amount (i.e. 13.5%) has been invested in alternative assets, especially 5.1% on
Real Estate.
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are monthly, quarterly or annual returns. Under specific assumptions (markets
without friction, independent and identically distributed (i.i.d.) asset returns2

and power utility to describe investor’s utility), the optimal portfolio allocation
is myopic. It means that, whatever the investment horizon, the weights are
constant, implying that short-term and long-term asset allocations are equal.
However, it is usually recognized that investors with longer investment horizon
invest a higher percentage of their portfolio in stocks, which is not consistent
with portfolio allocations determined from basic models of portfolio optimiza-
tion (see e.g. Canner et al., 1997). As emphasized by Bajeux-Besnainou et al.
(2001), popular investment advice does not conform to the myopic property.

Additionally, the optimal portfolio allocation may depend significantly on
the predictability of asset returns through their autocorrelations as emphasized
for instance by Campbell and Viceira (2002). However the prediction of asset
returns is difficult, especially for long time horizons. For instance the riskiness
of stocks returns versus those of bonds may be questioning. For the real estate
market, MacKinnon and Al Zaman (2009) examine the predictability of real es-
tate returns in the U.S. They show that direct real estate returns exhibit mean
reversion process and highlight how real estate investment risk is weaker for long-
term investors. Introducing investment horizons in a buy and hold strategy as in
Campbell and Viceira (2005), they conclude that real estate allocation increases
in the long term due to the decline of long term correlations:3 “real estate is
a better diversifier for long-term portfolios than for short-term”. In particular,
they find (and use) a decreasing volatility over time and suggest an optimal
allocation to real estate between 31% (versus 20% for short-term horizon, e.g.
1-year). Pagliari (2017) also shows how varying correlations between different
asset classes modify the optimal mixed allocation. Adding the transaction costs
and the marketing period risk to the return predictability, 4 Rehring (2012)
finds the same conclusions for the U.K. commercial real estate: the allocation
to real estate increases strongly with the investment horizon. The importance
of return predictability for long-term horizons and of transaction costs for short
and medium term is particularly highlighted. The author also finds a decreas-
ing volatility of real estate returns over time.5 The allocation to real estate
is found to increase substantially with the investment horizon (from 58% to

2Note that most studies relying on traditional mean/variance optimization assume i.i.d.
returns.

3Heaney and Sriananthakumar (2012) highlight in particular how the correlation between
real estate returns and capital markets is time-varying.

4Indeed, real estate markets present many specificities such as transaction costs, lack of
liquidity (as illustrated - among other things - by the marketing period risk and the rental
vacancy rate). It is also well documented that (the observed or reported) direct (private)
real estate returns exhibit autocorrelation (see, among others, Geltner (1991) who deal with
smoothing issue and Barkham and Geltner (1995) who point out that returns are not i.i.d.).

5For example, as noted by Rehring (2012): “high transaction costs imply expected real
estate returns, per period, that are much higher in the long run than in the short run.”
Regarding the volatility, Rehring (2012) examines the U.K. real estate market and shows that
the conditional standard deviation of commercial real estate returns depends on the investment
maturity as for usual stocks. In other words, Rehring (2012) internalizes the transaction costs
both in the return and volatility modelling.

3



87% for 20 years horizon). Pagliari (2017) examines real estate’s role in institu-
tional mixed-asset portfolios using both private and public real estate indices.
He emphasizes the role of the auto-correlation of private-market asset returns.
Pagliari (2017) shows that, compared to public-market asset classes that look
like random walks, the annualized long-horizon volatility decreases less slowly
and long-horizon correlation with most public-market assets increases. Finally,
he uses a decreasing long-horizon volatility and suggests an allocation to real
estate of somehow 10% to 15% for long term investors.6 Therefore, as empha-
sized by Campbell and Viceira (2005) in the general case7 and by MacKinnon
and Al Zaman (2009) in the real estate context, it is necessary to estimate and
to take account of the mean-reverting term-structure of expected returns and
volatility risks for stocks, bonds, cash and real estate assets.

In this paper, following the aforementioned authors, we analyze the mixed-
asset portfolio problem based on four basic financial assets: a money market
account (the cash), a bond with constant maturity, a real estate asset and
a financial stock index. We assume that the investor seeks to maximize the
expected utility of her terminal wealth. According to previous comments on
the markets properties and investors behaviors towards risk, we take account
of various markets features as follows: First, we do no longer consider static
investment strategies (i.e. ”buy and hold”) but instead dynamic strategies. In-
deed, dynamic portfolio optimization (”continuous-time rebalancing”) allows to
better take account of the financial structure, in particular of the information
flows; second, such modelling enables to consider different forms of term struc-
tures, for example, a mean-reverting term structure for both excess expected
return and volatility; third, we consider a bond with constant maturity.8

In this framework, we contribute by providing a general solution to the port-
folio allocation problem taking account on one hand of the utility of investors
(and thus their risk aversion) and of their time horizons and, on the other
hand, by taking account of mean-reverting properties for both expected returns
and volatilities term structures. As in Wachter (2002), we assume the market
completeness, but to take account simultaneously of the mean-reverting proper-
ties of expected returns, volatilities and correlations, we introduce deterministic
time-varying functions to model both excess returns and volatilities. As shown
in the empirical and numerical sections, such functions correspond usually to
negative exponentials with respect to time.9

6All the previous authors find decreasing volatilities function for real estate and thus real
estate is less risky for longer-horizon investors. Similar results are provided by Baroni et al.
(2008) for the French residential market in Paris.

7Campbell and Viceira (2005) examine the U.S. market and show that, contrary to cash,
stock returns are mean reverting. This means that the long-term volatility of stock returns
(per period) is lower than the short-term return volatility. They find also that bond returns
are slighty mean reverting.

8As discussed by Bajeux-Besnainou et al. (2001), the introduction of constant duration
bonds allows to get a bond/stock ratio which increases with time when assuming that returns
follow geometric Brownian motions.

9Wachter (2002) considers only mean-reverting property of the drift of one single as-
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The intertemporal optimization problem is solved by using the martingale
approach. To model the multifactor term structure avoiding any arbitrage op-
portunity, we extend the model introduced by Chiarella et al. (2016). Using the
martingale approach developed by Cox and Huang (1989), we provide explicit
solutions for the optimal portfolio values and the associated portfolio weights.
We detail in particular the logarithm, CARA and CRRA cases. Such approach
leads to more realistic results. To illustrate these features, we conduct a numer-
ical analysis from Rehring (2012) estimates.

The proposed model contributes to the literature in portfolio allocation and
shows how the term structure to maturities of real estate must be taken into
account. This specific term structure comes first from the tangible aspect of real
estate and second from liquidity constraints inherent to this asset class (all this
also has an impact on transaction costs: between 5% and 10% on real estate,
for example). In particular, these two characteristics explain why the holding
period of a portfolio of real estate assets is much higher than that prevailing on
equities and thus why this must be taken into account in the modelling process.

The contribution of the article can be summed-up as follows. First, the cur-
rent state of research has not been able to reach a consensus about the place of
real estate assets in a multi-asset portfolio allocation. Especially, the difference
between suggested (10-20%) and actual allocation (7-9%) is still puzzling for
academics and practitioners. In this line, our article contributes to the field
overall knowledge as our proposed allocation model explains the empirical ob-
served weights. Note that our contribution is particularly appealing considering
the investment horizon that comes into play: the longer the investment hori-
zon, the larger the proportion of real estate assets (due to the term structure
of returns, volatilities and correlations). Second, the paper proposes a dynamic
portfolio optimization model that accounts for the whole real estate term struc-
ture. In particular, we derive explicit solutions that consider investment horizon
and holding period. The last and not the least this research contributes to the
real estate literature in the sense that it justifies why in a context of low interest
rate environment, the real estate allocation may increase as it allows capturing
de-correlation and liquidity premiums.

The paper is organized as follows. First, we introduce the financial market
modelling. In particular, we detail the multi factor model that describes the

set. This paper introduces a specific Ornstein-Uhlenbeck process to model the instantaneous
Sharpe ratio (but with a constant volatility) which is driven by the same Brownian motion
as for the dynamics of the risky asset. This allows the financial market completeness. In a
discrete-time setting, Campbell and Viceira (2005) introduce a vector autoregressive (VAR)
model, which justifies the mean-reverting property of the drift. However, such approach does
not lead to exact explicit solutions and moreover volatility is also assumed to be constant.
They deal also with only one single asset. When dealing with multi asset allocation, time-
varying correlation must be also taken into account. Additionally, looking at financial data,
return volatilities are also mean reverting. Finally, in the numerical section, note that all
excess expected returns per year and standard deviations per year look like negative expo-
nential functions of time to maturity. Thus, they correspond to the expectations of stochastic
mean-reverting processes such as the Ornstein-Uhlenbeck process.
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bond and the real estate asset dynamics precluding any arbitrage opportunity.
We then explicitly compute the risk-neutral density and determine all the asset
risk premia. Then, we provide the solution of the optimization problem, for quite
general utility functions and especially for the logarithm, CARA and CRRA
cases. Finally, we illustrate the mean-reversion properties of assets and compute
numerically the solution for the CRRA case. As a by-product, we show how to
calibrate our continuous-time model to cumulative data over time as those of
Rehring (2012). We thus analyze the general behavior of the various portfolios.
Some of the technical proofs are relegated to appendices.

2 The Financial Market

To take account of various markets features as mentioned previously, we first
generalize the framework considered in Chiarella et al. (2016) by introducing a
multifactor term structure model with time-varying drifts and volatilities pre-
cluding any arbitrage opportunity. It is a generalization of Black and Scholes
model and a variant of the Merton (1971) one state variable model. The model
we consider assumes normality of log returns. This assumption is not too restric-
tive, when dealing with long term investment. This allows in particular getting
explicit formulas. Since standard bonds with long maturities are not generally
available on the financial markets and to be in accordance with popular advice,
we assume that the bond has a constant duration, as in Bajeux-Besnainou et al.
(2001) and Rehring (2012). Note that this general modelling with time-varying
drifts and volatilities allows to calibrate the model in order to take account of
the mean-reverting properties as documented by Rehring (2012) and Pagliari
(2017) (see Appendix C).

2.1 The set of basic assets

The market is assumed to be arbitrage-free and without friction. Financial
transactions occur in continuous-time, along a time period [0, T ]. Four basic
assets are available at any time on the market:

• An instantaneously riskless money market fund, the cash, with a price
denoted by C;

• A real estate asset P ;

• A stock index fund with a price S;

• A bond fund B with constant duration DB obtained by rolling continu-
ously bonds throughout the investment period [0, T ]. It is denoted by BD
which is a zero-coupon bond with maturity (t+D) at time t.

Since continuous-time rebalancing is allowed, financial markets can be assumed
to be complete by introducing three sources of risk. For this purpose, we in-
troduce a multidimensional Brownian motion W = (W r, WP , WS) to describe
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the uncertainty of the asset returns. The correlation matrix is given by:

Σc =

 1 ρr, P ρr, S

ρr, P 1 ρP, S

ρr, S ρP, S 1

 . (1)

Recall that the predictable compensator 〈W a, W b〉 of the product W aW b sat-
isfies (see e.g. Jacod and Shiryaev, 2002):

d〈W a, W b〉t = ρa, bdt.

2.2 Basic asset dynamics

- The money market C satisfies:

dCt
Ct

= rtdt. (2)

- The bond fund BD with constant duration DB is solution of:

dBDB , t
BDB , t

= (rt + θBt (DB))dt− βr(DB)ardW
r
t , (3)

where θB(DB) is the risk premium of bond B. - The real estate asset P satisfies:

dPDP , t
PDP , t

= (rt + θPt )dt+ σPt dW
P
t , (4)

- The stock index fund with price S is defined by:

dSt
St

= (rt + θSt )dt+ σSt dW
S
t . (5)

Denote by τ the remaining time to maturity T (i.e. τ = T − t). We assume
that the real interest rate rt follows an Ornstein-Uhlenbeck process given by:

drt = kr(r − rt)dt+ ardW
r
t , (6)

where the convergence speed kr and the long term value r are positive con-
stants.10The bond pricing formula is based on an exponential affine model, as

introduced by Duffie and Kan (1996):

B(rt, t, T ) = exp [−α(τ)− βr(τ)rt] , (7)

10Recall that the Ornstein-Uhlenbeck process is given by:

rt = r0e
−krt + r(1− e−krt) + are

−krt

∫ t

0
ekrsdW r

s .

It has been introduced by Vasicek (1977) to model stochastic interest rates (see e.g. Brigo
and Mercurio, 2006).
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where α(τ) and βr(τ) are determined by using the no-arbitrage condition. Due
to the normalization, the coefficients satisfy the following terminal conditions
at maturity:

α(0) = 0 and βr(0) = 0.

We have:
dB(rt, t, T )

B(rt, t, T )
= µB(t, τ)dt− βr(τ)ardW

r
t ,

µB(t, τ) = α′(τ) + β
′

r(τ)rt − βr(τ)kr(r − rt) +
1

2

[
β2
r (τ)a2r

]
.

θBt = α′(τ) + β
′

r(τ)rt − βr(τ)kr(r − rt) +
1

2

[
β2
r (τ)a2r

]
− rt

σBt = βr(T − t)ar

In order to obtain the bond price, we use the standard no-arbitrage argument
as in Chiarella et al. (2016). The financial market is complete. Therefore, there
exists a unique risk-neutral probability Q associated to three market premia,
λr, λP and λS which density η with respect to the initial probability P is given
by:

ηt = E
[
dQ
dP
|Ft
]

= exp

[
−Mt −

∫ t

0

Asds

]
, (8)

where
Mt = ∫ t0 λr,sdW r

s + ∫ t0 λP,sdWP
s + ∫ t0 λS,sdWS

s , (9)

and

At =
1

2

(
λ2r,t + λ2P,t + λ2S,t

)
+ λr,tλP ρ

r, P + λr,tλS,tρ
r, S + λP,tλS,tρ

P, S . (10)

Each of the three basic assets B, P and S must satisfy the following condition:
when they are discounted by the nominal money market account C, they must
be martingales with respect to the risk-neutral probability Q. This is equivalent
to the fact that, when their are multiplied by the Radon-Nikodym density and
divided by C, they must be martingales with respect to the historical probability
P. It is equivalent to the fact that their bounded variation components are equal
to 0. This later condition implies the three following equalities: Condition 1:((
B(rt, t, T )/ exp

[
∫ t0 rsds

])
× ηt

)
t

is a P-martingale:

µB(t, τ)− rt + arβr(τ)
[
λr,t + λP,tρ

r, P + λS,tρ
r, S
]

= 0. (11)

Condition 2:
((
Pt/ exp

[
∫ t0 rsds

])
× ηt

)
t

is a P-martingale:

µPt − rt − σPt (λr,tρ
r, P + λP,t + λS,tρ

P, S) = 0. (12)

Condition 3:
((
St/ exp

[
∫ t0 rsds

])
× ηt

)
t

is a P-martingale:

µSt − rt − σSt
[
λr,tρ

r, S + λP,tρ
P, S + λS,t

]
= 0. (13)
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From the previous system of equations, we deduce the risk premia of the three
basic assets P , B, and S. They are defined as the excess instantaneous expected
returns with respect to the interest rate r.

Proposition 1 The three risk premia θP , θB and θS are given by:
i) Nominal Bond B: For fixed duration DB,

θBt = µB(t, DB)− rt = −arβr(DB)
[
λr,t + λP,tρ

r, P + λS,tρ
r, S
]
. (14)

ii) Real estate asset P:

θPt = µPt − rt = σPt (λr,tρ
r, P + λP,t + λS,tρ

P, S). (15)

iii) Stock price S:

θSt = µSt − rt = σSt
[
λr,tρ

r, S + λP,tρ
P, S + λS,t

]
, (16)

where λr, λP and λS are usually interpreted as the market prices of risk (or
factor loadings) associated respectively to the sources of risk W r, WP and WS.

Functions α(.) and βr(.), which are involved in the exponential affine model
describe the value of the bond. They are given by:

βr(τ) =

(
1− exp(−τkr)

kr

)
.

and

α(τ)

τ
= ar

[
r

ar
− λr + λP ρ

r, P + ρr, SλS
kr

] [
1− 1

τkr
+

exp(−τkr)
τkr

]

− a2r
2k2r

[
1− 2 [1− exp(−τkr)]

τkr
+

1− exp(−2τkr)

2τkr

]
.

In this setting, B(rt, t, T ) can be replicated using the assets C and BD which
span the bond market, as in Bajeux et al. (2001) for a simpler case. This
dynamic combination of fixed-income securities of different durations is referred
to as the passive immunization (see Fong, 1990; Fabozzi, 2000). From previous
Proposition 1, we can determine the market prices of risk λr, λP and λS . Indeed,
introduce the matrix Γ equal to: −arβr(DB) −arβr(DB)ρr, P −arβr(DB)ρr, S

σPt ρ
r, P σPt σPt ρ

P, S

σSt ρ
r, S σSt ρ

P, S σSt

 . (17)

We have: θB

θP

θS

 = Γ.

 λr
λP
λS

 , which implies

 λr
λP
λS

 = Γ−1.

 θB

θP

θS

 .
9



3 Optimal portfolios

Let us introduce the matrix Σ of the rates of return of B, P , S given by:

Σt =

 −βr(DB)ar 0 0
0 σPt 0
0 0 σSt

 . (18)

We recall the standard results about optimal portfolio computation when the
financial is complete (see e.g. Prigent, 2007). Portfolio weights are respectively
denoted by xC , xB , xP and xS (with xC + xB + xP + xB = 1). The portfolio
value at time t is denoted by Vt. Therefore, the portfolio value V follows the
dynamics:

dVt
Vt

= [rt + xB(t)θBt + xP (t)θPt + xS(t)θSt ]dt (19)

+xB(t) [−βr(DB)ardW
r
t ] + xP (t)

[
σPt dW

P
t

]
+ xS(t)

[
σSt dW

S
t

]
.

The investor’s preferences is described by her utility function U , which embeds
her risk aversion. Function U is assumed to satisfy usual properties, namely it
is strictly increasing, strictly concave and twice continuously differentiable (see
e.g. Gollier (2001) for definitions and main properties of utility functions). We
consider an investor with an initial capital denoted by V0. She is assumed to
maximize the expected utility over the time horizon T , defined on the portfolio
value Vt. Thus, her optimal portfolio weights are the solutions of the following
problem:

Max
xC , xB , xP , xS

E [U (VT )] .

For different utility functions, we determine the optimal portfolio. We show in
particular how it depends on the investor’s risk aversion. We detail the solutions
for the logarithm, HARA and CARA utility functions.

3.1 General result

To solve the optimization problem given V0, where the set of variables is the
collection of all self-financing strategies, Cox and Huang (1989) use the market
completeness to propose a change of variables. The new variables are all possible
portfolio values at maturity with only one constraint:

V0 = EP

VT ηT

exp
(
∫T0 rs ds

)
 . (20)

Differentiating with respect to the variables VT (ω) for each random event ω,
leads to the equation:

U ′ (VT ) = ν
ηT

exp
(
∫T0 rs ds

) ,
10



where ν is a Lagrange multiplier determined by the initial investment constraint.
Denoting J(y) = (U ′)−1(y), the optimal solution is given by:

V ∗T = J

(
ν

1

HT

)
. (21)

where HT is the numeraire portfolio, equal to:

HT =

 ηT

exp
(
∫T0 rsds

)
−1 . (22)

To compute the replicating strategies for a given optimal portfolio, first note
that V ∗t /Ht is a martingale. Thus, we obtain the martingality relation:

V ∗t
Ht

= EP,t [V ∗T /HT ] . (23)

Therefore, it is necessary to compute conditional expectations of quantities
which are functions of V ∗t /Ht. For this purpose, the conditional expectations of
the numeraire portfolio have to be used. We first consider the logarithm utility
case. For the other cases, note that the optimal portfolios are functions of the
optimal logarithm portfolio.

3.1.1 The logarithm case

The logarithm utility function is defined by U(x) = ln(x) for x > 0, so that the
absolute risk aversion is −U ′′(x) /U ′ (x) = 1/x and the relative risk aversion is
constant and equal to −xU ′′ (x) /U ′ (x) . = 1. In that case, the optimal portfolio
is called the numeraire portfolio (see Long (1990) or the growth-optimal portfolio
(see Merton, 1992). Its value at maturity T , denoted by V ln

T , is given by:

V ln
T = V0 HT . (24)

Note that
(
∫Tt rs ds

)
has a Gaussian distribution. Thus, the ratio

[(HT /Ht )]
z

has a Lognormal distribution for any power z 6= 0. This ratio is equal to
exp[Nz(t, T )] where Nz(t, T ) has a Gaussian distribution. Therefore, the con-
ditional expectation Et [[(HT /Ht )]

z
] is defined by:

Et[[(HT /Ht )]
z] = exp[E(Nz)(t, T ) +

1

2
V ar(Nz)(t, T )], (25)

where: (see Appendix A)

E(Nz)(t, T ) = zΦ(t, T ) and V ar(Nz)(t, T ) = z2Ψ(t, T ),

11



Φ(t, T ) = (T − t)×

(
r + (rt − r)

βr(T − t)
T − t

+
1

T − t

∫ T

t

A(s)ds

)
,

and
Ψ(t, T ) =

a2r
k2r

[
(T − t) + 1

2kr
[1− exp(−2(T − t)kr)]− 2βr(T − t)

]
+2
∫ T
t
A(s)ds+ 2ar

∫ T
t

(
λr,s + λP,sρ

r,P + λS,sρ
r,S
) [

1−e−(T−s)kr

kr

]
ds,

with

A(t) =
1

2

(
λ2r,t + λ2P,t + λ2S,t

)
+ λr,tλP,tρ

r, P + λr,tλS,tρ
r, S + λP,tλS,tρ

P, S .

Denote respectively by α̂N,(t, T ) and β̂N,(t, T ) the conditional expectations:

Et[(Ht/HT )] and Et[Ht ln((Ht/HT ))/HT ].

Then we deduce:

α̂N(t, T ) = exp[−Φ(t, T ) +
1

2
Ψ(t, T )] and β̂N(t, T ) = α̂N(t, T ) ×

(
Φ(t, T ) −Ψ(t, T )

)
.

In order to simplify notations, we respectively denote by E(Nz)(T ), V ar(Nz)(T ),

ΦT , ΨT , α̂N, T and β̂N, T the values of Et(Nz)(0, T ), V ar(Nz)(0, T ), Φ(0, T ) ,

Ψ(0, T ), α̂(0, T ) and β̂(0, T ). For the logarithmic case, the optimal weights are

determined as follows. The process
(
V ln

H

)
t

is a P-martingale. Therefore, we

have:
V ln
t

Ht
= EP,t

[
VT
HT

]
,

which implies:
V ln
t = V0Ht.

But, the portfolio value V is solution of the following (SDE):

dV ln
t

Vt
= [rt + xB(t)θB + xP (t)θP + xS(t)θS ]dt

+xB(t) [−βr(DB)ardW
r
t ] + xP (t)

[
σPt dW

P
t

]
+ xS(t)

[
σSt dW

S
t

]
.

Additionally, we have:

dV ln
t = V0dHt and dHt = Ht [rtdt+ Mt + 2A(t)dt] .

To determine the weights, we must identify the martingale parts (the three
stochastic Brownian integrals). We obtain the following system:

λr,t = −xB(t)βr(DB)ar
λP,t = xP (t)σ

P
t

λS,t = xS(t)σ
S
t

12



This relation is equivalent to:11 (denote by Λ the factors vector and X the
weighting vectors on B, P and S)

Λ = tΣX, which is also equivalent to X =
(
tΣ
)−1

Λ.

Therefore, we deduce the optimal weights at any time t.

Proposition 2 For the logarithmic case, the optimal weights are given by:
xB(t) = hB,t = − λr,t

βr(DB)ar

xP (t) = hP,t =
λP,t
σPt

xS(t) = hS,t =
λS,t
σSt

xC(t) = hC,t = 1− xB(t)− xP (t)− xS(t)

(26)

In the growth-optimal portfolio, hC , hB, hP and hS represent respectively the
weights invested on the nominal money account, on the value of the bond with
constant maturity, on the real asset with constant duration and on the stock.

3.1.2 CARA utility function

Assume now that the investor has a constant absolute risk aversion case which
corresponds to the exponential utility function Ûa(x) = − exp (−ax) /a where
a is the absolute risk aversion (a > 0). The optimal portfolio value for the
exponential utility function, V exp

T , is a function of the numeraire portfolio given
by:

V exp
T = J

(
υ

1

HT

)
,

which is equivalent to:

V exp
T = −1

a
[ln(λ) + ln(1/HT )] = −1

a

[
log(υ) + ln(ηT exp(−∫T0 Rs ds))

]
,

where υ is solution of:

ln(υ) =
−aV0 − E [(1/HT ) ln(1/HT )]

E [(1/HT )]
.

The previous condition implies that the optimal value V exp
T is equal to:

V exp
t = HtEt

[
(1/HT )

(
1

a
A(V0) + ln(HT )

)]
,

11Note also that we can determine the optimal weighting vector X from the vector of risk
premia θ itself since we have:

X =
(

tΣ
)−1

Λ =
(

tΣ
)−1

Γ−1θ.
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where:

A(V0) =
aV0 + E [(1/HT ) ln(1/HT )]

E [(1/HT )]
=
aV0 + β̂N, T

α̂
N, T

.

Using the martingality relation, the value V exp
T is given by:

V exp
t = HtEt

[
(1/HT )

(
1

a
A(V0) + ln(HT )

)]
.

Finally, we obtain:

Proposition 3 For the CARA case, the optimal portfolio value at any time t
of the management period is given by:

V exp
t =

[
A(V0)α̂N,(t, T ) +

1

a
β̂N,(t, T )

]
+

1

a
ln(Ht)α̂N,(t, T ). (27)

Using the same approach as for the numeraire portfolio, we can determine
the optimal weights for the CARA case, as shown in Appendix B.

3.1.3 HARA utility function

Consider utility function which has a hyperbolic absolute risk aversion (HARA).
This family of utility functions can be written as follows:

Uγ(x) =

(
γ

1− γ

) (
x− x∗

γ

)1−γ

. (28)

where γ and x∗ are two parameters that cannot be both negative. The risk
aversion is an increasing function of the absolute value of γ. It includes the
CRRA utility function (x∗ = 0), in particular the logarithmic case for γ = 1.
The optimal portfolio at maturity T ,V HARA(γ, T ) , is given by:

V HARA
(γ, T )

= x∗ +

 V0 − x∗α̂N, T

E[(HT )

(
1−γ
γ

)
]

 (HT )
(
1
γ )
. (29)

This expression can be interpreted as follows: the optimal portfolio is a combina-
tion of a CRRA fund with γ parameter and a zero-coupon bond with nominal
x∗ at time T . We consider the special case of CRRA utility function. This
means that the investor does not impose the guarantee constraint VT ≥ x∗ at
maturity. Thus, this case corresponds to x∗ = 0. The optimal portfolio weights
for the CRRA utility function are determined from the following relations (see
Appendix B for details): (denote z = 1−γ

γ )
λr,t
γ + zarβr(T − t) = δB(t) = −xB(t)βr(DB)ar

λP,t
γ = δP (t) = xP (t)σ

P
t

λS,t
γ = δS(t) = xS(t)σ

S
t

Therefore, we deduce the optimal weights at any time t.
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Proposition 4 The optimal weights for the CRRA case are given by:
xCRRAB (t) = − δB(t)

βr(DB)ar

xCRRAP (t) = δP
σPt

xCRRAS (t) = δS
σSt

xCRRAC (t) = 1− xCRRAB − xCRRAP − xCRRAS

(30)

Remark 5 (Two-funds separation) The optimal CRRA weights XCRRA can be
decomposed as follows:

XCRRA =
1

γ
XLog + (1− 1

γ
)XConservative, (31)

where XLog is the optimal portfolio for the logarithm case, and XConservative

corresponds to the optimal portfolio for an infinite relative risk aversion γ. Here,
this latter portfolio is equal to:

XConservative =

 βr(T − t)/βr(DB)
0
0

 . (32)

Remark 6 The ratios of asset weights are immediately deduced from Propo-
sition 4. Indeed, for example both bond/stock and real estate/stock ratios are
respectively given by:

xB(t)/xS(t) = hB,t/hP,t + (γ − 1)βr(T − t)/(βr(DB)/hP,t), (33)

xP (t)/xS(t) = hP,t/hS,t.

In Bajeux-Besnainou et al. (2001), when there is no real estate asset and when
risky assets follow geometric Brownian motions, the first above equation shows
that the bond/stock ratio is increasing with respect to time.

To study the corresponding portfolio return distribution, we briefly recall
how to compute its expectation and its cumulative distribution function. The
portfolio return is given by:

V CRRAT =
V0

E

[
H

1−γ
γ

T

] (HT )
1
γ .

The mean of the return per year is given by:

E

(V CRRAT

V0

) 1
T

 =

E

[(HT )
1
γ

] 1
T


(
E
[
(HT )

1−γ
γ

]) 1
T

.
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But we have:

E

[
H

1−γ
γ

T

]
= exp

[
zΦ(0, T ) +

1

2
z2Ψ(0, T )

]
, with z =

1− γ
γ

.

Consider now the real portfolio return per year (
V

(r)CRRA
T

V0
)
1
T . We get:

P

(V CRRAT

V0

) 1
T

≤ x

 =

P
[
exp

[
1

γ
N1(0, T )

]
≤ xT exp

[
zΦ(0, T ) +

1

2
z2Ψ(0, T )

]]
=

P
[
N1(0, T ) ≤ γ

(
log(xT ) + zΦ(0, T ) +

1

2
z2Ψ(0, T )

)]
=

N

γT log(x)− γΦ(0, T ) + 1
2
(1−γ)2
γ Ψ(0, T )√

Ψ(0, T )

 , with z =
1− γ
γ

.

The expected real return per year T is given by:

E0

(V CRRAT

V0

) 1
T

 =E0

 (HT )
1
γT

E
[
(HT )

1−γ
γT

]
 =

exp

[
1
γT Φ(0, T ) + 1

2

(
1
γT

)2
Ψ(0, T )

]
exp

[
1−γ
γT Φ(0, T ) + 1

2

(
1−γ
γT

)2
Ψ(0, T )

] ,
from which we deduce:

E0

(V CRRAT

V0

) 1
T

 = exp

[
1

T
Φ(0, T ) −

1

T 2

(
1

2
− 1

γ

)
Ψ(0, T )

]
.
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4 Numerical illustration

We illustrate numerically the theoretical solution from Rehring (2012), who
consider annual dataset from 1965 to 2008 for the U.K. market. The cash
return corresponds to U.K. three-month treasury bill, the bond yield to yield
of Barclays gilt index, the stock to Barclays equity index and the real estate
is constructed as described in Rehring (2012) from unsmoothed log real capital
returns.

4.1 Excess return per year and instantaneous excess re-
turn (term structure)

Recall that the short-term interest rate is assumed to follow an Ornstein-Uhlenbeck
process as introduced by Vasicek (1977) (see Relation 6). Using Rehring (2012)
data on UK three-month treasury bill, the estimates of the short-term parame-
ters are given by:

ar = 0.03, kr = 0.2; r0 = 1.8%; r = 1.8%.

In a first step we calibrate the excess cumulated expected returns per year. We
find that approximations by negative exponentials of type αµ − βµexp(−λµt)
provide a good fit to observed data (see Figures 1 and 3). For the real estate P
and the stock S, we get respectively:

αPµ = 0.04;βPµ = 0.08;λPµ = 0.4,

αSµ = 0.061;βSµ = 0.007;λSµ = 0.061.

Then, to fit instantaneous excess return term structure, we begin by substracting
the expectation of the short-term interest rate, namely:

E[rt] = r − (r − r0)exp(−krt).

Finally, we apply results of Appendix C to identify the instantaneous excess
return of both the real estate asset and the stock, as shown in Figures 1, 2, 3 and
4. Figures 1 and 3 present the calibration of expected return per year of the real
estate and stocks asset respectively and Figures 2 and 4 present the calibration
of the drift term structure of the real estate and stocks asset respectively. Recall
here that the calibrations are based on the empirical results of Rehring (2012).
These figures raise number of comments. First, our model allows to accurately
fit the empirical analysis of Rehring (2012), which highly contributes to attest
the quality of our analysis. Note that the model is more closely related to the
expected return per year than to the drift term structure. This can be attributed
to both the complexity of the term structure on the long run and the limited
amount of data. Second, the difference between real estate and stocks assets is
obvious. Indeed, when the expected return per year is decreasing over horizon
for stocks, it is increasing for real estate assets. Third and finally, it is interesting
to concentrate on returns and expected return numbers. In particular, real
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estate returns (and expected returns) are negative on the short-term period but
strongly increase after 3-4 years (see Figures 1 and 2) indicating how this asset
is sensitive to the holding period and therefore highlighting the usefulness of
our modelling. This, in addition, is the contrary for stocks as shown in Figures
3 and 4.

Figure 1: Calibration of the expected return per year of the real estate asset

Figure 2: Calibration of the drift term structure of the real estate asset
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Figure 3: Calibration of the expected return per year of the stock

Figure 4: Calibration of the drift term structure of the stock

4.2 Standard deviation per year and volatility (term struc-
ture)

To fit the standard deviation per year, we can also use negative exponentials of
type ασ − βσexp(−λµt). We get:

αPσ = 0.085;βPσ = −0.12;λPσ = 0.45,

αSσ = 0.134;βSσ = −0.13;λSσ = 0.455.

Applying results of Appendix C, we determine the volatility of both the real
estate asset and the stock, as shown in Figures 5 and 6.
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Figure 5: Calibration of the standard deviation per year T and the volatility
term structure of the real estate asset, function of current time t

Figure 6: Calibration of the standard deviation per year T and the volatility
term structure of the stock, function of current time t

4.3 Correlation term structure

We search to calibrate the correlations of the three Brownian motions, namely
the three parameters ρr, P , ρr, S and ρP, S . Note that these correlations do not
depend on current time t during a given management period [0, T ]. But, for fixed
horizon T , we can calibrate the constant parameters ρT

r, P , ρT
r, S and ρT

P, S

to actual data such as those of Rehring (2012), in particular from annualized
correlations of cumulated asset returns (see Appendix C). Results are provided
in Figures 7, 8 and 9.
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Figure 7: Calibration of the correlation of real estate and stock

Figure 8: Calibration of the correlation of bond and stock

Figure 9: Calibration of correlation of bond and real estate
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4.4 Optimal weights (CRRA case)

For the numerical illustrations of how the optimal portfolio allocation depends
on both the current time t and the time horizon T , we consider three types of
investors with CRRA utilities: the first one is aggressive (γ = 3), the second
one is more moderate (γ = 5), the third one is conservative (γ = 15). We apply
results of Proposition 4 to illustrate the optimal weights for the CRRA case. We
begin by providing the optimal weights horizon, namely T = 20 years. Figures
10, 11 and 12 show that the optimal weight on the real estate asset is always
increasing with respect to current time, as in Rehring (2012) for t > 3 years.
At maturity (t = T = 20), it reaches respectively about 85% for γ = 3, 50% for
γ = 5 and 17% for γ = 15. Both the weights on the bond and the stock are
decreasing.

Figure 10: Weights for maturity of 20 years and relative risk aversion = 3

Figure 11: Weights for maturity of 20 years and relative risk aversion = 5
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Figure 12: Weights for maturity of 20 years and relative risk aversion = 15

Allocating assets means allocating risks/returns trade-off. One of the inter-
ests of real estate assets is that they behave differently from bonds or equities,
and are generally said to be poorly correlated with other standard assets, which
means that they can be combined advantageously (see Eichholtz, 1996).

Indeed, real estate assets exhibit a low liquidity since real estate obviously
cannot be sold quickly without high losses. Indeed this liquidity induces some
modelling specificities.

As it can be seen from Figures (1, 2) and (3, 4), both the expected return
per year and the drift term structure are increasing with respect to time for the
real estate asset while it is the converse for the stock.

Additionally, looking at Figures (5, 6), both their standard deviations per
year and their volatility term structures have a similar behavior with respect to
time. This explains why the allocation on real estate asset is increasing with
respect to time while it is not the case for the stock.

We examine now the optimal weights for a shorter horizon, namely T = 10
years. Figures 13, 14 and 15 show that the optimal weight on the real estate
asset is still increasing with respect to current time.

23



At maturity (t = T = 10), it reaches respectively about 65% for γ = 3, 40%
for γ = 5 and 12% for γ = 15. Both the weights on the bond and the stock are
also still decreasing. Compared to the maturity of 20 years case, we note that,
at a given current time t, weights at t = 10 years are not exactly equal to those
for an horizon of 10 years. This is due to the term structure. For example, when
dealing with a maturity of 20 years, the weights computed at t = 10 years are
respectively equal to 70% for γ = 3, 43% for γ = 5 and 16% for γ = 15. Thus,
they are slightly higher than previous ones.

Figure 13: Weights for maturity of 10 years and relative risk aversion = 3

Figure 14: Weights for maturity of 10 years and relative risk aversion = 5
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Figure 15: Weights for maturity of 10 years and relative risk aversion = 15

For the numerical illustrations of how the optimal portfolio allocation de-
pends on the relative risk aversion γ, we consider a time horizon equal to 20
years and four current times, namely t = 2, 5, 10 and 20 years.

Figures 16 and 17 show in particular that the allocation on the real estate
asset can be increasing with respect to relative risk aversion, provided that the
current time is relatively small compared to the time horizon.

Figure 16: Weights for maturity of 20 years evaluated at time t=2 years

25



Figure 17: Weights for maturity of 20 years evaluated at time t=5 years

Figures 18 and 19 show that the allocation on the real estate asset is de-
creasing with respect to relative risk aversion, provided that the current time is
relatively high compared to the time horizon. This latter property is more in
accordance with the findings of Rehring (2012) who considers static allocations
for several time horizons and two risk aversion levels corresponding respectively
to the global minimum variance portfolio and the portfolio with a goal of 5%
expected return.12

Figure 18: Weights for maturity of 20 years evaluated at time t=10 years

12This is also the case for Pagliari (2017) at least for private real estate.
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Figure 19: Weights for maturity of 20 years evaluated at time t=20 years

To summarize previous findings, first recall that our main purpose is to
propose a continuous-time optimization framework that takes account of mean
reverting properties as the discrete-time VaR models of Campbell and Viceira
(2002, 2005), Rehring (2012) and Pagliari (2017), while, (contrary to these
previous results) allowing to get explicit optimal allocations, in particular as
functions of the risk aversion and the time horizon. This is illustrated in previ-
ous figures. Second, when illustrating our model on Rehring’s data, we are able
to recover similar results, at least for the two cases investigated in Rehring’s
data, namely a high risk aversion and an objective corresponding to 5% ex-
pected return. In particular, we show that the allocation on real estate asset
is increasing with respect to time while it is not the case for the stock. As
mentioned previously, this is mainly due to increasing expected return per year
for the real estate asset while it is decreasing over horizon for stocks. Finally,
note that contrary to Rehring (2012) and Pagliari (2017), our model provides
dynamic optimal solutions for all time horizons and risk aversion levels.

5 Conclusion

Real estate has traditionally been viewed as a low-risk asset class with good di-
versification properties. Given that most institutional investors have very long-
time horizons, typical portfolio optimizations based only on short-term returns,
without accounting for return predictability, will produce results quite different
from observed optimal allocation for these investors. The result of mean rever-
sion is that the risk of real estate investment would be significantly reduced for
long-term investors than for those with shorter investment horizons. This paper
emphasizes the impact of the term structure of the asset returns, in particular
the role of real estate market volatility on the optimal mix asset allocation. For
this purpose, the investor is assumed to maximize the expected utility of her
final wealth. We analyze in particular the optimal weights according to mean
reverting assumptions about the term structure of the real estate asset. Our
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results show how optimal portfolio weights depend crucially on the investor’s
risk aversion and time horizon and also on the considered term structure of
asset returns. As emphasized by Feldman (2003) and Rehring (2012), the real
estate allocation varies very significantly according to both risk aversion and
portfolio horizon. We show also that it can be increasing with respect to cur-
rent time and portfolio horizon. Finally, our findings allow to emphasize that,
by considering mean reverting properties of asset returns, we get in particular
real estate portfolio allocations closer to reality for long term investors having
significant relative risk aversions, since the optimal weight on real estate asset
lies between 10% and 20%. A possible extension would be to examine the effects
of market incompleteness13 as for instance in Karatzas et al. (1991) and specific
constraints on portfolio weights as in Cvitanic and Karatzas (1992).14 In that
case, it would be possible to determine the associated compensated variation,
due to this lack of hedging against real asset risk, as computed for other market
frictions in de Palma and Prigent (2009).
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Appendix

Appendix A: Properties of the numeraire portfolio

Recall that the Radon-Nikodym density of the risk-neutral probability is given
by:

ηt = exp

[
−Mt −

∫ t

0

A(s)ds

]
where

Mt =

∫ t

0

λr,sdW
r
s +

∫ t

0

λP,sdW
P
s +

∫ t

0

λS,sdW
S
s ,

and

A(t) =
1

2

(
λ2r,t + λ2P,t + λ2S,t

)
+ λr,tλP,tρ

r,P + λr,tλS,tρ
r,S + λP,tλS,tρ

P,S .

The numeraire portfolio H is equal to:

Ht =
exp

(∫ t
0
rsds

)
ηt

.

Consequently, we get:

lnHt =

∫ t

0

rs ds+ Mt +

∫ t

0

A(s)ds.

Since
(
W r,WP ,WS

)
is a Gaussian process, we can deduce that lnHt

is Gaussian itself. We have to determine its expectation and variance. More

precisely, we determine the conditional expectations for powers z of Et
[
HzT
Hzt

]
.

The ratio
HzT
Hzt

satisfies:

Hz
T

Hz
t

= exp [Nz(t, T )] ,

with

Nz(t, T ) = z

[∫ T

t

rsds+ MT−Mt +

∫ T

t

A(s)ds

]
.

The process Nz(t, T ) is Gaussian distributed. Thus, to determine Et
[
HzT
Hzt

]
, we

have just to compute Et [Nz(t, T )] and V art [Nz(t, T )], since we have:

Et
[
Hz
T

Hz
t

]
= exp

[
Et [Nz(t, T )] +

1

2
V art [Nz(t, T )]

]
.

1) Determination of Et [Nz(t, T )]. We have:

Et [Nz(t, T )] = z

(∫ T

t

Et [ru] du+

∫ T

t

A(s)ds

)
.
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We deduce: for u > t,

Et [ru] = r + (rt − r)e−(u−t)kr .

Finally, we get:

Et [Nz(t, T )] = z(T − t)

(
r + (rt − r)

βr(T − t)
T − t

+
1

T − t

∫ T

t

A(s)ds

)
,

which is equivalent to:
Et [Nz(t, T )] = zΦ(t,T ),

with:

Φ(t,T ) = (T − t)

[
r + (rt − r)

βr(T − t)
(T − t)

+
1

T − t

∫ T

t

A(s)ds

]
.

2) Determination of V art [Nz(t, T )]. Step 1: computation of V art

[∫ T
t
rsds

]
-

To calculate V art

[∫ T
t
rsds

]
, we use the Fubini’s property for stochastic inte-

grals. We have:

rt = r + (rs − r)e−(t−s)kr + are
−(t−s)kr

∫ t

s

e(u−s)krdW r
u .

∫ T

t

ru du = r(T − t) + (rt − r)βr(T − t)

+

∫ T

t

(
are
−(u−t)kr

∫ u

t

e(v−t)krdW r
v

)
du.

Then:∫ T

t

[
are
−(u−t)kr

∫ u

t

e(s−t)krdW r
s

]
du =

∫ T

t

(∫ T

s

are
−(u−t)kre(s−t)krdu

)
dW r

s ,

=

∫ T

t

(
ar

[
1− e−(T−s)kr

kr

])
dW r

s ,

V art

[∫ T

t

rs ds

]
= a2r

∫ T

t

[
1− e−(T−s)kr

kr

]2
ds,

V art

[∫ T

t

rs ds

]
=
a2r
k2r

[
(T − t) +

1

2kr
[1− exp(−2(T − t)kr)]− 2βr(T − t)

]
.

Step 2: computation of V art [MT−Mt]:

V art [MT−Mt] = 2

∫ T

t

A(s)ds.
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Step 3: computation of Covt

[∫ T
t
rs ds;MT−Mt

]
:

Covt

[∫ T

t

rs ds;MT−Mt

]
=

∫ T

t

ar
(
λr,s + λP,sρ

r,P + λS,sρ
r,S
) [1− e−(T−s)kr

kr

]
ds

To conclude, recall that:
V art [Nz(t, T )] =

z2

(
V art

[∫ T

t

rs ds

]
+ V art [MT−Mt] + 2Covt

[∫ T

t

rs ds, MT−Mt

])
.

Therefore, we get:
V art [Nz(t, T )] =

z2

 a2r
k2r

[
(T − t) + 1

2kr
[1− exp(−2(T − t)kr)]− 2βr(T − t)

]
+2
∫ T
t
A(s)ds+ 2

∫ T
t
ar
(
λr,,s + λP,sρ

r,P + λS,sρ
r,S
) [

1−e−(T−s)kr

kr

]
ds

 .

Appendix B: Optimal weights

In what follows, we consider the CRRA case. At time t, the optimal CRRA
portfolio value is given by:

V CRRAT =

 V0

E[H
( 1−γ

γ )
T ]

H
( 1
γ )

T . (34)

Denote

Ã =

 V0

E[H
( 1−γ
γ )

T ]

 .

To compute the optimal weights xC , xB , xP , and x
S
, first we calculate V CRRAt .

We have:

V CRRAt

1

Ht
= Et

[
1

HT
V CRRAT

]
= ÃH

( 1
γ )

t Et
[
(HT /Ht)

( 1
γ−1)

]
.

which implies

V CRRAt = ÃH
( 1
γ )

t Et [(HT /Ht)
z
] with z =

1

γ
− 1.

Using Relation (25), we get:

V CRRAt = ÃH
( 1
γ )

t exp

[
zΦ(t, T ) +

1

2
z2Ψ(0, T )

]
with z =

1

γ
− 1.
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Then, we determine
dV CRRAt

V CRRAt
by using Relation (34). Applying Ito’s formula, we

get the martingale part of
dV CRRAt

V CRRAt
:

dV CRRAt = (...)dt

+
1

γ
V CRRAt

(
λr,tdW

r
t + λP,tdW

P
t + λS,tdW

S
t

)
+V CRRAt z [βrardW

r
t ]

We obtain the following system:
λr,t
γ + zarβr(T − t) = δr(t) = −xB(t)βr(DB)ar

λP,t
γ = δP (t) = xP (t)σPt
λS,t
γ = δS(t) = xS(t)σSt

Therefore, we deduce that, at any time t, the weights are given by:
xCRRAB (t) = − δi(t)

βi(D)ai

xCRRAP (t) = δP (t)

σPt

xCRRAS (t) = δS(t)

σSt
xCRRAC (t) = 1− xCRRAB − xCRRAP − xCRRAS

Recall that Σ is the matrix:

Σ =

 −βr(DB)ar 0 0
0 σPt 0
0 0 σSt

 .
We have: 

λr,t
γ + zarβr(T − t)

λP
γ
λS
γ

 = tΣ.

 xCRRAB (t)
xCRRAP (t)
xCRRAS (t)

 ,
thus:  xCRRAB (t)

xCRRAP (t)
xCRRAS (t)

 = tΣ−1.




λr,t
γ + zarβr(T − t)

λP,t
γ
λS,t
γ


 .

Recall that z = 1
γ −1 and that the optimal portfolio for the logarithm case XLog

is given by:  xLogB (t)

xLogP (t)

xLogS (t)

 = tΣ−1.

 λr,t
λP,t
λS,t

 .

Therefore, we have:

XCRRA =
1

γ
XLog + (1− 1

γ
)XConservative,
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where XLog is the optimal portfolio for the logarithm case, and XConservative

corresponds to the optimal portfolio for an infinite relative risk aversion γ. This
latter portfolio is given by: xConservativeB (t)

xConservativeP (t)
xConservativeS (t)

 = tΣ−1.

 −arβr(T − t)0
0

 .

Appendix C (Calibration)

In what follows, we detail how we can calibrate drifts, volatilities and instan-
taneous correlations of the Brownian motions to respectively expected returns
per year, standard deviations per year and assets correlations.15 Indeed, most
of the empirical results about mean reverting asset returns are based on cu-
mulated returns on given time periods [0, T ] which are further annualized (see
e.g. Campbell and Viceira, 2002, 2005; Rehring, 2012; Pagliari, 2017). Using a
continuous-time approach, we have to identify the parameters corresponding to
instantaneous variations using those which correspond to annualized character-
istics of cumulated returns.

In what follows, we consider two financial assets X and Y defined by:

dXt = Xt(µ
X
t dt+ σXt dW

X
t ), (35)

dYt = Yt(µ
Y
t dt+ σYt dW

Y
t ), (36)

where Wt =
(
WX
t ,W

Y
t

)
1≤i≤d is a 2-dimensional Brownian motion with corre-

lation matrix Σc,T given by

Σc,T =

[
1 ρW

X ,WY

T

ρW
X ,WY

T 1

]
,

where ρW
X ,WY

T =
〈
WX
t ,W

Y
t

〉
t

is a constant calibrated for a fixed management
period [0, T ]. Denote:

Σt =

[
σXt 0
0 σYt

]
.

Computation of expected returns and variances. Denote θXt = µXt − rt.
The random variable XT can be expressed as XT = exp

[
NX
T

]
where NX

T has a
Gaussian distribution with

E
[
NX
T

]
= ΦXT ,

where

ΦXT =

[
rT + (r0 − r)βr(T ) +

∫ T

0

(
θXs −

1

2

[
σXs
]2)

ds

]
,

and
V ar

[
NX
T

]
= ΨX

T ,

15Detailed proofs are available on request.
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with

ΨX
T =

a2r
k2r

[
T +

1

2kr
[1− exp(−2Tkr)]− 2βr(T )

]
+

∫ T

0

[
σXs
]2
ds+ 2arρ

Wr,WX

T

∫ T

0

σXs

[
1− e−(t−s)kr

kr

]
ds

Therefore, we have:

E [XT ] = X0 exp

[
ΦXT +

1

2
ΨX
T

]
,

and the variance is given by:

V ariance [XT ] = X2
0 exp

[
2ΦXT + ΨX

T

] (
exp

[
ΨX
T

]
− 1
)
.

Calibration to the given return per year g(T ) and to the given stan-
dard deviation per year h (T ). We must have:

1

T
exp

[
ΦXT +

1

2
ΨX
T

]
= g(T ),

1

T
exp

[
2ΦXT + ΨX

T

] (
exp

[
ΨX
T

]
− 1
)

= h (T ) ,

from which, we deduce:

ΦXT = Log

[
Tg(T )/

√
1 +

h (T )

Tg2(T )

]
,

ΨX
T = Log

[
1 +

h (T )

Tg2(T )

]
.

Therefore, we have:

For all T ,
∂ΦXT
∂T

=
∂

∂T
Log

[
Tg(T )/

√
1 +

h (T )

Tg2(T )

]
,

∂ΨX
T

∂T
=

∂

∂T
Log

[
1 +

h (T )

Tg2(T )

]
.

Consequently, we get a first relation:

∂ΦXT
∂T

=
∂

∂T
[rT + (r0 − r)βr(T )] +

(
θXT −

1

2

[
σXT
]2)

,

=
∂

∂T
Log

[
Tg(T )/

√
1 +

h (T )

Tg2(T )

]
,
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which yields to: (
θXT −

1

2

[
σXT
]2)

=

∂

∂T
Log

[
Tg(T )/

√
1 +

h (T )

Tg2(T )

]
− ∂

∂T
[rT + (r0 − r)βr(T )]

To get the standard deviation, we use the following second relation:

∂ΨX
T

∂T
=

∂

∂T

(
a2r
k2r

[
T +

1

2kr
[1− exp(−2Tkr)]− 2βr(T )

])
+
[
σXT
]2

+ 2ar
∂

∂T

(
ρWr,WX

T

∫ T

0

σXs

[
1− e−(t−s)kr

kr

]
ds

)

=
∂

∂T
Log

[
1 +

h (T )

Tg2(T )

]
Finally, we get:

[
σXT
]2

+ 2ar
∂

∂T

(
ρWr,WX

T

∫ T

0

σXs

[
1− e−(T−s)kr

kr

]
ds

)

=
∂

∂T
Log

[
1 +

h (T )

Tg2(T )

]
− ∂

∂T

(
a2r
k2r

[
T +

1

2kr
[1− exp(−2Tkr)]− 2βr(T )

])
,

where we have:

∂

∂T

(
ρWr,WX

T

∫ T

0

σXs

[
1− e−(T−s)kr

kr

]
ds

)
=

∂

∂T

(
ρWr,WX

T

)∫ T

0

σXs

[
1− e−(T−s)kr

kr

]
ds+ρWr,WX

T

∂

∂T

(∫ T

0

σXs

[
1− e−(T−s)kr

kr

]
ds

)
.

Computation of covariances and correlations. In what follows, we search
to calibrate the correlations of the three Brownian motions, namely the three
parameters ρT

r, P , ρT
r, S and ρT

P, S to Rehring (2012) data (annualized corre-
lations of cumulated asset returns). For this purpose, let us denote:

At = E

[∫ t

0

rsds

]
= rt+ (r0 − r)βr(t);

Bt =
a2r
k2r

[
t+

1

2kr
[1− exp(−2tkr)]− 2βr(t)

]
;

Ct = arρ
Wr,WX

T

∫ t

0

σXs

[
1− e−(t−s)kr

kr

]
ds;

Dt = arρ
Wr,WY

T

∫ t

0

σYs

[
1− e−(t−s)kr

kr

]
ds.
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Taking account of the interest rate randomness, the covariance of asset prices
X and Y is given by:

CovX,YT =

X0Y0 exp

[∫ T

0

(
θXs + θYs

)
ds+ (2AT +BT + CT +DT )

]
(

exp

[∫ T

0

σXs σ
Y
s ρ

WX ,WY

T ds+ (BT + CT +DT )

]
− 1

)
.

Taking account of the interest rate randomness, the correlation ρX,YT of asset
prices X and Y is given by:

ρX,YT = CovX,YT /(
√
variance (XT )

√
variance (YT )),

which yields to:
ρX,YT =

exp [(BT + CT +DT )]
(

exp
[
ρW

X ,WY

T

∫ T
0
σXs σ

Y
s ds+ (BT + CT +DT )

]
− 1
)

√(
exp

[∫ T
0

[σXs ]
2
ds
]
− 1
)√(

exp
[∫ T

0
[σYs ]

2
ds
]
− 1
) .

Thus, we get:

ρW
X ,WY

T =
1∫ T

0
(σXs σ

Y
s ) ds

×

 Log

 1 + ρX,YT exp [− (BT + CT +DT )]√(
exp

[∫ T
0

[σXs ]
2
ds
]
− 1
)√(

exp
[∫ T

0
[σYs ]

2
ds
]
− 1
) 

− (BT + CT +DT )

 .

Note that, if rt were deterministic, then we would have a special case with
µXs = rs + θXs , µYs = rs + θYs and Bt = Ct = Dt = 0. In such a case, the
covariance of asset prices X and Y is given by:

σX,YT = X0Y0 exp

[∫ T

0

(
µXs + µYs

)
ds

](
exp

[
ρW

X ,WY

T

∫ T

0

σXs σ
Y
s ds

]
− 1

)

Therefore, for a fixed management period [0, T ] and for a given correlation

function ρX,YT defined by:

ρX,YT = CovX,YT /(
√
variance (XT )

√
variance (YT )),

we find:
ρX,YT =
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(
exp

[
ρW

X ,WY

T

∫ T
0
σXs σ

Y
s ds

]
− 1
)

√(
exp

[∫ T
0

[σXs ]
2
ds
]
− 1
)√(

exp
[∫ T

0
[σYs ]

2
ds
]
− 1
) .

Thus, we get:

ρW
X ,WY

T =
1∫ T

0
σXs σ

Y
s ds
×

Log

1 + ρX,YT

√√√√(exp

[∫ T

0

[σXs ]
2
ds

]
− 1

)√√√√(exp

[∫ T

0

[σYs ]
2
ds

]
− 1

) .
The previous formula can be applied not only to the real estate-stock case but
also, when the bond is involved. However, as detailed in Section 2, the bond
modelling is such that the term structure is affine (see Relation 7).
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