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Abstract An important component in the analysis of real estate performance
and allocation is the efficient calibration of the distribution of returns. The clas-
sical method is to compute market or sub-market returns and volatilities, and
to then calculate the standard performance measure, namely the Sharpe ratio.
This measure is only based on the first two moments of the return distribution.
Therefore, a significant weakness of this method is that it implicitly assumes that
this distribution is Gaussian (if not, the approach may lead to a bad fit for the
distribution). In fact, risk comes not only from volatility but from higher mo-
ments of the distribution, such as skewness and kurtosis. In order to resolve this
issue, we focus on another risk-adjusted performance measure, one that takes the
Value-at-Risk (VaR) as the risk measure, as was adopted by the Basel II regulation
directive. This criterion is based on specific quantiles of the distribution of returns.
When the VaR is computed from the Cornish Fisher expansion, the corresponding
risk-adjusted performance measure is called the modified Sharpe ratio. Usually,
its computation is based on the first four moments of the return’s distribution.
However, this methodology can exhibit several pitfalls, and thus, this paper shows
how to make proper use of this tool. The usefulness of the proposed methodology
is illustrated through an empirical application to optimal portfolio allocation in
commercial real estate, using the IPD database. We find that markets that ap-
pear more desirable using simple Sharpe ratios bear, in reality, higher risk when
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the distribution of returns is taken into account in a more appropriate manner.
Institutional investors may find that the technique proposed here is useful in that
it allows them to consider non-normality in real estate performance analysis.

Keywords: Real estate portfolio; performance measures; Cornish Fisher expan-
sion; modified Sharpe ratio

JEL classification: C61, G11, R39
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1 Introduction

Most practitioners’ analyses of real estate markets and funds focus on total re-
turn figures only. As such, they ignore risk, and thus, risk-adjusted performance,
measures. The rationale behind such a treatment is a concern only with absolute
returns. In particular, such an approach does not take into account the link be-
tween return and risk, contrary to Markowitz (1952). Nevertheless, comparison of
absolute returns is widely used by marketers in the real estate field, to show that
their management and allocations are superior to those of the competition.

Comparing investments is straightforward in very special cases: given equal risk,
higher expected return is always better, and reciprocally, given equal expected
return, lower risk is always preferable. Matters become complicated when two or
more markets with different expected returns and risks are considered. Needless to
say, when funds or indices exhibit different risk characteristics, naïve comparisons
of this nature become extremely misleading. Investors who rely solely on returns
to choose their allocation may not be prepared for the difficulties that lie ahead.
Investing is, by nature, a two-dimensional process based not only on returns, but
also on the risk taken to achieve those returns. In particular, given the fact that
higher return is always desirable, but higher risk never is, the next question is
how much additional return is a sufficient compensation for additional risk. This
is precisely where risk-adjusted performance measures are helpful.

Measuring performance in real estate is difficult. Typically, funds or markets are
compared without mention of risk. This is mainly because of two reasons: first,
the various return measures that exist in real estate (single-period returns, multi-
period returns, income returns, capital returns, total returns, real versus nominal
returns, etc.), and second, the absence of relevant risk metrics in real estate. In
addition, the origin of performance (either capital return or income return) is
more difficult to ascertain in real estate than in other sectors, given the numerous
players that participate in the management process, namely, fund managers, asset
managers, brokers, property managers, facility managers, etc. For a long time, the
lack of data and information about real estate markets made the estimation of
risk difficult. However, in the era of big data, with the growth and improvement
of large datasets, risk estimation is becoming easier.

Condensing return and risk into a single useful risk-adjusted number is one of the
key tasks of performance measurement. Basically, good risk measurement must
make it possible to compare the performance of markets with similar risk charac-
teristics, as well as the performance of other funds having different risk character-
istics. Even if the number of performance measures is large, the Sharpe ratio is, in
practice, the most commonly used measure of risk-adjusted performance. Defined
by the Nobel laureate Sharpe (1966), the Sharpe ratio measures the “excess return
per unit of volatility.” It is calculated by dividing the excess return of a market or
a fund by its volatility. Algebraically, it is given by

SR =
rP − rf
σP

, (1)

where rP is the average return of portfolio P, rf is the risk-free rate, and σP is
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the standard deviation of returns of portfolio P.1 By analyzing this risk-adjusted
performance ratio, we can identify which markets or categories outperformed the
others. An important weakness of this method, however, is that it presupposes
normal distributions of returns, as it only considers the first two moments of the
distribution of returns.

The Sharpe ratio is useful when assets are normally distributed, since the distribu-
tion of returns is then completely described by its mean and volatility (the inputs
to equation 1).2 When the distribution of returns cannot be considered as normal,
it becomes necessary to rely on performance measures that take non-normality into
account. To solve the non-normality issue, Favre & Galeano (2002) and Gregoriou
& Gueyie (2003) introduced a modification of the traditional Sharpe ratio, the
modified Sharpe ratio (mSR).3 It is defined as the ratio between the excess return
of a market, an asset, or a fund, and its Value-at-Risk or V aR (the definition of
V aR appears in appendix A), where V aR is computed using the Cornish Fisher
expansion, denoted asmV aRα in the literature, with α being the probability level:

mSRα =
rP − rf
mV aRα

. (2)

rP is the average return of the portfolio, rf the risk-free rate, and mV aR is our
way of computing V aR that neither relies on strong assumptions (such as the need
for a normal distribution) nor requires excessive data (as do historical methods). It
is based on use of the Cornish Fisher expansion. This approach makes it possible
to approximate the true (unknown) distribution of returns. It takes the form of
the Gaussian quantile estimation plus some correction terms taking account of the
skewness and kurtosis of the return distribution (the Cornish Fisher expansion and
procedure are presented in appendix C). mV aR is popular among practitioners
as well as academics because of its precision and the explicit form it takes (it is
straightforward to compute and interpret). Thus, the Cornish Fisher expansion
is a relatively easy and parsimonious way of dealing with non-normality in asset
prices or returns. Using mSR allows us to recognize that risk comes not only from
volatility but also from higher moments like skewness and kurtosis (an overview of
skewness and kurtosis parameters is provided in appendix B). In particular, this
article shows how this measure is preferable to the more traditional one.

Even though mV aR is popular and has proven to be a useful technique, its use is
restrained by its domain of definition (see Chernozhukov et al., 2010). One must
also be careful that the parameters of the formula are not confounded with those
of the underlying distribution (see Maillard, 2012). Typically, the literature (see

1 As numbers are typically expressed on an annual basis, the Sharpe ratio itself is also expressed on
an annual basis (especially because increases in standard deviation are not linear).

2 However, recent evidence shows that the Sharpe ratio can result in almost identical fund rankings
compared to alternative performance measures (see Eling & Schuhmacher, 2007).

3 This performance metric is part of the RhoV aR performance metric class

ρV aRα =
rP − rf
V aRα

,defined as the ratio between the excess return of a market, an asset, or a fund, and its
Value-at-Risk.
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for instance Lee & Higgins, 2009; Christoffersen, 2012; Hull, 2012) does not specify
the domain of definition of the Cornish Fisher expansion, and thus, this is a possi-
ble pitfall that remains to be addressed. As a result, the use of the Cornish Fisher
expansion is generally restricted to cases where the distribution is close to a normal
one. Solutions overcoming the two obstacles just mentioned have been proposed
by Chernozhukov et al. (2010) and Maillard (2012). Following their methodology,
it is possible to properly compute mV aRs irrespective of the distributions.

The remainder of the paper is organized as follows. Following a literature review in
section 2, the modified Sharpe ratio and its subsequent Cornish Fisher expansion
is presented in section 3, with an emphasis on the proper use of this tool. Section
4 implements the proposed methodology and discusses the empirical results.

2 Literature review

The research on performance measures has largely focused on the problem of
knowing whether or not managers are able to beat the market (Markowitz, 1952;
Sharpe, 1966; Jensen, 1968; Malkiel & Fama, 1970).

The extensive literature on efficient portfolios includes studies that incorporate real
estate as an asset. Goetzmann & Ibbotson (1990) used estimations of real estate
price appreciation and emphasized the commonly held perception that investing
in property is less risky than investing in stock markets. Along the same lines,
Brueggeman et al. (1984) showed how the inclusion of real estate in a portfolio
can substantially reduce portfolio risk. They also observed the hedging properties
of commercial real estate against expected inflation. The conclusions of the litera-
ture depend on the way real estate returns are estimated (often based on appraisal)
and on the manner in which real estate is compared to other investments. In this
domain, the studies by Clayton et al. (2008) or Geltner et al. (2013) are appealing
and describe how the peculiarities of real estate, concerning liquidity, transaction
costs, and investment size, make the estimation of returns and volatility of this
asset class difficult.

Few studies have concentrated on performance measures in the context of real
estate. Most of the research in this area has focused on fund managers trading
public real estate securities and on the performance of managers in publicly listed
real estate companies (Brounen et al., 2007; Chiang et al., 2008). The literature
on the performance of institutional real estate firms investing directly in property
assets is sparse, and up till now, data limitations have restricted the scope of the
research questions and published empirical evidence. A few studies, nevertheless,
have examined the question. The research conducted by Bond & Mitchell (2010)
in this field is particularly interesting. Using a dataset from IPD database, they
analyzed the performance of managers in direct real estate investments in the UK
and found no evidence of excess returns. Chou & Hardin III (2014) questioned
whether capital flows into private real estate funds predict subsequent returns.
They studied this question at the individual real estate investment trust (REIT)
and mutual fund levels. They showed how returns are negatively associated with
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increased fund flows and fund size. Downs et al. (2016) treated the same issue
in the context of direct real estate investments and direct property investment
vehicles only. They found that flows are not a good predictor of future returns,
and that these flows chase past returns instead. In order to measure the active
management of a fund, Higgins (2010) used tracking error to analyze Australian
unlisted wholesale property funds and identified many investment styles driven
principally by debt levels and sector specificities.

Studies on real estate have often used the Sharpe ratio as it is considered as one of
the industry standards (even if the volatility estimation is sometimes questionable).
For instance, Lee & Stevenson (2005) highlighted the usefulness of risk-adjusted
performance measure analysis in selecting the best available real estate investment
opportunities. In their paper, they investigated the effects of the selected time hori-
zon in the context of portfolio optimization. One of their mean–variance efficient
portfolios is computed on the basis of the Sharpe Ratio (ex post). Fugazza et al.
(2009) studied portfolio allocation in the context of a multi-period setting. Using
the Sharpe ratio (and the certainty equivalent), they showed that diversifying into
REITs increases wealth for all investment horizons. Except for the article by Lee
& Higgins (2009), none of the literature concentrates specifically on the modified
Sharpe ratio. Our work is closely related to the former study. They used the mod-
ified Sharpe ratio in a real estate context for the Australian market. The authors
argued that the Sharpe performance formula neglects two important character-
istics of real estate returns: non-normality and autocorrelation. They calculated
numerous Sharpe ratios in order to examine the joint effects of autocorrelation
and non-normality on the risk-adjusted performance for a certain real estate asset
class. They found that the direct property in Australia is characterized by excep-
tional performance even when the effects of non-normality and autocorrelation are
taken into account.

The non-normality of real estate return distributions is another perplexing issue.
This point was studied a considerable time ago by Myer & Webb (1994), Young &
Graff (1995), and Byrne & Lee (1997). Recent studies such as those by Lizieri &
Ward (2000), Young et al. (2006), and Young (2008) show that real estate returns
usually exhibit non-normal returns. Real estate returns typically lean to the left
(showing negative skewness) and exhibit fat tails (denoting leptokurtosis). These
works focused mainly on Anglo–Saxon economies, but similarities in real estate
return distributions are also found elsewhere. In the context of V aR computation,
the return distribution has a strong impact. V aR is the estimation of an extreme
quantile, and as such, it requires reasonable estimation not only near the center of
the distribution but also in the tail, particularly if returns exhibit non-zero skew-
ness and excess kurtosis.4 The distribution used to estimate the V aR of a portfolio
needs to be determined from such return distributions or corresponding sector in-
dices. Nonetheless, an inappropriate normality assumption is regularly adopted in
order to determine V aR, mostly because it allows quick and easy computation (for
an example in real estate in the context of Solvency II, see Amédée-Manesme et

4 Value-at-risk, however, does not assess the kurtosis of the loss distribution. With regard to V aR, a
high kurtosis indicates fat tails of the loss distribution, where losses greater than the maximum
expected loss may occur.
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al., 2015).

Methods to compute V aR or to determine distribution quantiles have already been
the subject of considerable research following the introduction of V aR into current
banking practice (for a comprehensive review of methods, see Christoffersen, 2012).
A considerable volume of research has concentrated on the best methods to com-
pute V aR. Pichler & Selitsch (1999) compared five V aR methods in the context of
portfolios and options, namely, the Johnson transformations, Variance–Covariance
analysis, and the three Cornish Fisher expansions of the second, fourth, and sixth
orders. They concluded that a sixth-order Cornish Fisher expansion is the best
among the analyzed approaches. Jaschke (2001) concentrated on the properties
of the Cornish Fisher expansion and its underlying assumptions in the context of
V aR, with particular focus on non-monotonicity of the distribution function, in
which case convergence is not guaranteed. Jaschke discussed how the conditions
for its applicability make the Cornish Fisher approach difficult to use in practice
(points we treat in this paper). However, he demonstrated that when a dataset
obeys the required conditions, the accuracy of the Cornish Fisher expansion is
generally more than sufficient for one’s needs, in addition to being faster to imple-
ment than the other approaches.

V aR has been the subject of numerous papers on real estate, even if they primarily
focus on listed real estate and not direct real estate. V aR estimations for securi-
tized real estate rely on the same methods as those used for ordinary stocks and
bonds. Among others, the articles by Liow (2008), Cotter & Roll (2010), or Zhou
& Anderson (2012) should be consulted. Literature focusing on V aR in the context
of direct real estate investment (or funds) is sparse. Nonetheless, some studies do
concentrate on risk management and assessment in real estate. Booth et al. (2002)
examined risk measurement and management of real estate portfolios, suggesting
that practical issues force real estate investors to treat real estate differently from
other asset classes. The report focused on the difference between symmetric mea-
sures, such as standard deviation, and downside risk measures, such as V aR. Their
work concentrated on all risk measures used in real estate, thus constituting a sur-
vey of then-current real estate risk measures. Gordon & Tse (2003) considered V aR
as a tool to measure leveraged risk in the case of a real estate portfolio, in compar-
ison to use of the Sharpe ratio. Debt in a real estate portfolio is a traditional issue
much studied in real estate finance. Their paper demonstrated that V aR allows
better assessment of such risk. In particular, traditional risk-adjusted measures
(e.g., the Sharpe or Treynor ratio, as well as Jensen’s alpha) suffer from a leverage
paradox. Leverage adds risk along with potential for higher returns per unit of
higher risk. Therefore, the risk/return ratio does not change noticeably, and thus,
does not constitute an accurate tool by which to measure the risk inherent in debt.
Contrarily, V aR is quite a good tool for studying leveraged risk. Brown & Young
(2011) focused on spectral measures to assess real estate investment risk. V aR was
not their selected measure; instead, an Expected Shortfall (in a way, expectation
beyond V aR) was adopted. More recently, Amédée-Manesme et al. (2015) used
the Cornish Fisher expansion and a so-called rearrangement procedure to calculate
direct real estate V aR. They calculated a rolling V aR over time for real estate
returns using the UK IPD database and showed how the Cornish Fisher expansion
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makes it possible to adequately account for non-normality of returns in real estate.

3 The proper calculation of the modified Sharpe ratio

In this paper, we propose the use of the modified Sharpe ratio based on mV aR
risk measurement as the appropriate risk-adjusted performance measure. mV aR
owes its popularity in practice to its precision and explicit form. This makes it
straightforward to compute and interpret. However, use of mV aR should be done
with caution with regard to two points: (i) the domain of validity of the Cornish
Fisher expansion and (ii) the confusion between skewness and kurtosis parameters
as given by the formula and the corresponding parameters of the underlying dis-
tribution.

The mV aR calculation is based on the Cornish Fisher expansion. In short, the
Cornish Fisher expansion transforms naïve Gaussian quantiles according to the
skewness and kurtosis coefficients selected to characterize the true distribution.
This expansion is a simple polynomial function based on the Taylor series of the
corresponding unit normal quantile (for more precision, see Stuart & Ord, 2009),
where the coefficients of each resulting term are functions of the moments of the
true distribution under consideration. For instance, denoting the Gaussian and
the Cornish Fisher quantiles by zα and zCF,α respectively, we obtain the follow-
ing expression for the normalized Cornish Fisher quantile at the probability level α:

zCF,α = zα+
1

6
(z2α−1)S+

1

24
(z3α−3zα)(K−3)−

1

36
(2z3α−5zα)S2, ∀α ∈ (0, 1), (3)

where S and K denote the skewness and kurtosis coefficients of the true distribu-
tion (see the definition of S and K in Appendix B). The corresponding modified
Cornish Fisher quantile is then just:

qCF,α = µ+ zCF,ασ,∀α ∈ (0, 1). (4)

It is straightforward to note that in the presence of an underlying Gaussian dis-
tribution (S = 0 and K = 3), equation (3) reduces to the Gaussian quantile (and
thus, the Cornish Fisher expansion can obviously be used when the distribution is
normal).

Although the Cornish Fisher expansion has proven to be a useful technique, since
it is usually truncated at the third order (see appendix C), its use presents two
major pitfalls: (i) the resulting approximations of the distribution and quantile
functions can be non-monotone, and (ii) the skewness and the kurtosis of the Cor-
nish Fisher expansion are generally not those of the true distribution. Resolving
these two issues requires us to combine the works of Chernozhukov et al. (2010)
and Maillard (2012) and to use a so-called rearrangement procedure (i) with a cor-
rection of the parameters (ii). This leads to the correct use of the Cornish Fisher
expansion.
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(i) In fact, the resulting approximations of the distribution and quantile func-
tions can be non-monotone. There are constraints on the permitted values of the
true distributions’ moments so that the Cornish Fisher expansion itself yields a
well-defined distribution (for more details, see equation 10 in appendix C). This
is due to the third-order truncation of the Cornish Fisher expansion and the
fact that the polynomials involved in the expansion need not be monotone. The
non-monotonic behavior can lead to incorrect results, as illustrated by Amédée-
Manesme et al. (2015) in Figure 2. Indeed, in such a case, the quantile at a higher
threshold can be smaller in absolute terms than the one at a smaller threshold
(| qα1 |<| qα2 | ∀α1 > α2), which is obviously unpalatable for any cumulative
distribution function and even less desirable when it is used for risk measurement.
A solution to this issue has been proposed by Chernozhukov et al. (2010), who
suggested using a rearrangement procedure restoring the monotonicity of the ap-
proximation. The rearrangement procedure is a sorting operation: the previously
obtained values are simply sorted in increasing order. Furthermore, according to
Chernozhukov et al. (2009), in addition to restoring monotonicity, the rearrange-
ment improves the estimation properties of the approximation. The resulting im-
provement is due to the fact that the rearrangement necessarily brings the non-
monotone approximations closer to the true monotone target function.

(ii) Another difficulty associated with the use of the Cornish Fisher expansion
truncated at the third order is the confusion with regard to the skewness and
kurtosis parameters of that formula (denoted by Sc and Kc, respectively, in the
following) and those of the underlying true distribution (S and K, respectively).
This can lead to considerable mis-estimation of quantiles. Though this point has
already been raised by Maillard (2012), it does not seem to have received sufficient
attention elsewhere in the literature. The author presents a solution for avoiding
this problem by computing the correct moments of the distribution resulting from
the Cornish Fisher expansion. This leads to the following true skewness (S, equa-
tion 5) and true kurtosis (K, equation 6) parameters (the technical details are
available in the study by Maillard, 2012):

S =
Sc −

76

216
S3
c +

85

1296
S5
c +

1

4
KcSc +

13

144
KcS

3
c +

1

32
K2
cSc(

1 +
1

96
K2
c +

25

1296
S4
c −

1

36
KcS2

c

)1.5 S3
c . (5)

K =



3 +Kc +
7

16
K2
c +

2

32
K3
c +

31

3072
K4
c −

7

216
S4
c −

25

486
S6
c +

21665

559872
S8
c

− 7

12
KcS

2
c +

113

452
KcS

4
c −

5155

452
KcS

4
c −

7

24
K2
cS

2
c +

2455

20736
K2
cS

4
c −

55

1152
K3
cS

2
c


(
1 +

1

96
K2
c +

25

1296
S4
c −

1

36
KcS2

c

)1.5 −3.

(6)
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As demonstrated by Maillard (2012), proper use of the Cornish Fisher expansion
requires one to invert these relations. This way, the correct skewness and kurtosis
can be entered into the expansion (the particular correction is required owing to
the fact that the Cornish Fisher expansion is an approximation of order 3). This
can easily be done numerically.

Combining the rearrangement procedure (i) and the correction of the two param-
eters (ii) leads to the proper use of the Cornish Fisher expansion.

4 Application

4.1 Data presentation and treatment

We study the Total Return Annual Indices published by the MSCI real estate (for-
merly IPD) Office for 10 countries (Australia, Canada, France, Germany, Republic
of Ireland, Netherlands, New Zealand, Norway, UK, and USA) from 2000 to 2014
(14 returns). The selected data cover office investment only. These IPD indices
constitute a valuation-based index and are, “like all indices,” subject to criticism,
mainly in regard to their smoothness and reliability. The proposed approach re-
mains applicable, though, to any kind of index or to individual property returns,
assuming the first four moments can be estimated. Our objective in this part is
merely to apply our methodology to a commonly accepted and well-understood
index. In this sense, the IPD All Property Total Return Indices present three ad-
vantages: reliability, acceptance by practitioners, and substantial representation of
their components in institutional investors’ portfolios.5

Table 1 presents some basic statistics for each market within the original (smoothed)
dataset. On average, both the returns and the volatilities are about 8%. More
specifically, Canada exhibits the highest return. Germany presents the lowest re-
turn but also the lowest volatility, while Ireland seems to be the most volatile
market (nine times as volatile as Germany). Other than France, the Netherlands,
and New Zealand, all the markets display negative skewness. The kurtosis results
are less conclusive, with most of the markets having skewness close to 3, except
the Netherlands, which is far below 3, and Norway, the UK, and the USA, which
are all much above 3. The cases of the USA and the UK are particularly interest-
ing: both markets are strongly negatively skewed but exhibit high kurtosis, which
translates into the fact that the returns are negatively biased but relatively peaked.

5 These specific indices have many other limitations that are not dealt with here. Such issues have been
reported by Fisher et al. (1994).
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µ σ S K
Australia 9.80 7.11 -0.18 3.96
Canada 11.21 6.47 -0.37 3.11
France 9.17 7.11 0.13 2.75
Germany 2.81 1.95 -0.33 2.35
Ireland 5.62 17.42 -0.61 3.44
Netherlands 5.51 5.64 0.10 1.94
New Zealand 10.43 7.49 0.10 2.83
Norway 8.44 6.56 -0.64 4.76
UK 7.83 11.37 -1.33 5.98
USA 8.12 10.86 -1.62 5.61
Average 7.89 8.20 -0.48 3.67

Table 1: Descriptive statistics of original (smoothed) data

Issues pertaining to liquidity, transaction costs, and investment size make real es-
tate transactions rare (see Clayton et al. (2008) or Geltner et al. (2013)). Given
these real estate specificities, appraisal-based data are mainly used to present di-
rect real estate performance. This implies that reported returns are smoother than
“true” returns. As stressed by Lee & Higgins (2009), among others, the smoothed
nature of real estate indices tends to decrease the volatility of perceived returns
and thus bias traditional risk-adjusted performance measures such as the Sharpe
ratio. In addition, Geltner (1993) emphasized the relationship between smoothed
returns, serial correlation, and illiquidity, and consequently, asserted that autocor-
relation must be removed from return series before they can be used in any analysis
(see also Lo, 2002, , who stated that investors should adjust return series before
comparing Sharpe ratios). As noted by Lee et al. (2000), appraisal-based data usu-
ally exhibit autocorrelation, which may lead to underestimation of the true risk of
direct property, and therefore, to overestimation of the associated Sharpe perfor-
mance. It is accepted that the expected return of the unsmoothed series is equal
to the expected value of the observed returns. However, the second-order moment
of the distribution (i.e., the variance) is affected by the smoothness issue.6 Sev-
eral methods have been proposed to unsmooth smoothed returns. Following Lee
& Higgins (2009), we adopt the method proposed by Fisher et al. (1994). This
method is based on the assumption that the price of an asset is estimated using
the price reported in the previous period (or equivalently that the appraiser up-
dates his previous appraisal in each year or quarter based on new information).
More precisely, the observed return at period t (r∗t ) is a weighted average of the
“true” unobserved return at time t (rt) and the observed return at time t-1 (r∗t−1).
Considering a first-order autoregressive process, we get

r∗t = αr∗t−1 + (1− α)rt, (7)

where α is the parameter of the first-order autoregressive obtained from the return
series. The variable α is set to the slope coefficient from the regression of r∗t to r∗t−1.

6 Smoothing (or unsmoothing) also has an impact on the third and fourth moments of the returns
distribution even if, to the best of our knowledge, the literature has been mute on this point.
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Original data Unsmoothed data
Australia 0.78 0.19
Canada 0.84 0.37
France 0.70 0.20
Germany 0.83 0.10
Ireland 0.46 0.35
Netherlands 0.74 0.16
New Zealand 0.91 0.42
Norway 0.66 -0.08
UK 0.52 0.25
USA 0.51 0.15
Average 0.72 0.22

Table 2: First-order autocorrelation data for original and unsmoothed
data

Table 2 shows how the unsmoothing process substantially reduces the impact of
autocorrelation. It should be noted that the autocorrelation has decreased, on av-
erage, by more than three times (from 0.72 to 0.22), with all markets now having
an autocorrelation below 0.4 (except New Zealand at 0.42).

µ σ S K
Australia 9.25 33.56 -1.47 6.77
Canada 9.24 42.13 -0.20 1.98
France 5.89 22.67 -0.82 5.85
Germany 1.87 8.65 1.04 3.48
Ireland 2.79 26.66 -1.31 5.88
Netherlands 0.86 13.75 -0.57 4.07
New Zealand 16.14 69.28 -1.68 6.01
Norway 7.20 21.86 -2.42 10.05
UK 7.13 23.44 -1.07 3.80
USA 7.43 22.64 -0.60 3.88
Average 6.78 28.46 -0.91 5.18

Table 3: Descriptive statistics of unsmoothed data

Table 3 presents some descriptive statistics for the unsmoothed data. As expected,
the returns are about the same as the ones of the original dataset: ∼ 7% versus 8%
in the original dataset. However, the effect on volatility is huge, with the average
volatility increasing threefold (∼ 28% versus 8% in the original dataset), and with
each country exhibiting an increase, the greatest being the ninefold increase for
New Zealand to a value of 70%. In addition, on average, the resulting distribu-
tions are more negatively skewed and exhibit higher kurtosis. Interestingly, and
contrary to the other countries, the unsmoothing process for the UK and the USA
brings their coefficients closer to those of the normal distribution (both skewness
and kurtosis become closer to 0 and 3, respectively).7

7 The effect of unsmoothing on skewness and kurtosis is not very well (or not at all) documented in
the literature (see also footnote 6).
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Our approach remains relevant even in the presence of a normal distribution (see
appendix D). Indeed, in this case, the skewness and kurtosis, respectively, are 0
and 3, and thus, equation 3 adds up to the Gaussian quantile (zα). For this rea-
son, determining the distribution of the returns is not key to the process, and the
previous results, namely deciding whether a distribution is normal or not, are not
necessary to proceed.

As was already mentioned, the skewness (Sc) and kurtosis (Kc) coefficients of the
Cornish Fisher expansion must be estimated by solving equations 5 and 6, respec-
tively. Table 4 presents the initial and corrected coefficients.

Empirical values Corrected values
S K Sc Kc

Australia -1.47 6.77 -0.964 6.34
Canada -0.204 1.98 -0.154 4.26
France -0.824 5.85 -0.516 5.65
Germany 1.04 3.48 0.778 5.15
Ireland -1.31 5.88 -0.871 5.99
Netherlands -0.565 4.07 -0.378 5.08
New Zealand -1.68 6.01 -1.22 6.56
Norway -2.42 10.0 -1.72 8.84
UK -1.07 3.80 -0.787 5.27
USA -0.602 3.88 -0.408 5.04
Average -0.91 5.18 -0.62 5.82

Table 4: Skewness and kurtosis coefficients: empirical and corrected
values (Maillard, 2012)

4.2 Performance measures

The use of the Sharpe ratio and the modified Sharpe ratio requires that one de-
termines a risk-free rate. The choice of the risk-free rate is an interesting question
for academicians as well as practitioners: it is often presumed that the risk-free
rate is given and/or easy to obtain. From a theoretical perspective, the risk-free
rate is the rate of return of an investment with zero risk over a specified period
of time. However, in reality, a risk-free rate does not exist, since all investments
carry some amount of risk.

In practice, both academics and practitioners usually use government security
rates as risk-free rates. In the context of this study, we consider various countries
over 14 years. We thus implicitly consider the case of a foreign investor who can
invest internationally and who has the choice of a risk-free asset (national or lo-
cal investors may be more limited regarding their choice of a risk-free asset). We
thus choose a risk-free rate of 3% over the period, as an international investor was
indeed able to locate assets with very limited risk for an annual return of about 3%.

Considering the use of the modified Sharpe ratio raises another question, namely,
which confidence level to use (the choice is a bit arbitrary). In particular, the
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choice of the confidence level may have a strong impact on the determination of
V aR, especially if the distribution exhibits high kurtosis. Models of risk based on
V aR start with the presumption that the confidence level is chosen. However, in
practice, it is very difficult to justify a particular confidence level. Most textbooks
illustrate V aR using a 5% confidence level because a comparison with two stan-
dard deviations becomes easier. In this study, we use a confidence level of 1%,
the value requested by the Basel Committee’s quantitative criteria. Discussing the
choice of the confidence level is not the primary subject of this paper, but it can,
nevertheless, be noted that the V aR computation under the normal assumption
gives the same ranking irrespective of the threshold level. This is not the case when
the normal assumption is removed.

Our objective is to compare the use of the following three performance measures:
the return, the Sharpe ratio, and the modified Sharpe ratio. More precisely, we
concentrate on the corrections (rearrangement and true moments) that have to
be undertaken to properly calculate mV aR. For comparison purposes, we also
add the modified Sharpe ratio computed under a normality assumption (hence,
only with µ and σ), denoted as NmSR. To do so, we compute six performance
measures: the returns (Returns), Sharpe ratio (SR), normal modified Sharpe ra-
tio (NmSR1%), standard modified Sharpe ratio (mSR1%), rearranged modified
Sharpe ratio (mSRrearranged

1% ), and corrected rearranged modified Sharpe ratio
(CmSRrearranged

1% ). Table 5 presents the results for the six performance measures.

First, it must be noted that three of the Sharpe ratios are negative regardless of
the risk metric used. Theoretically, the Sharpe ratio can take on any value; in
particular, negative Sharpe ratios are possible. A Sharpe ratio is negative when
excess return is negative. Excess return is the return on the asset, portfolio, or
market, less the risk-free rate, and therefore, excess return is negative when the
return on the market is lower than the risk-free rate. Negative Sharpe ratios do
not provide useful information because the risk-free asset then outperforms the
investment on a risk-adjusted basis.

Second, the changes among the three mSR computations are small. Only Ger-
many shows a considerable difference while going from mSR1% to mSRrearranged

1% .
The case of Germany is confirmed by Figure 1. As seen in Figure 1, differenti-
ating between the Cornish Fisher (magenta) curve and the rearranged Cornish
Fisher (red) curve is not always easy.When the two curves cannot be differenti-
ated, the rearrangement procedure is useless, as the ordering of quantiles is not
affected by the Cornish Fisher procedure (in such cases, the order of quantiles is
already increasing). However, differentiating the two curves (in particular, in the
lower tails) shows the importance of rearranging (or sorting) the results of the
Cornish Fisher procedure. For Germany, the effect of rearrangement is obvious,
since without rearrangement we get V aR5% = −10.2250 and V aR1% = −10.2113
(| V aR5% |>| V aR1% |!) versus V aRrearranged5% = −8.2977 and V aR1% = −9.4729
with rearrangement. Even if only this one country is obviously affected by the
Cornish Fisher ordering issue for the quantiles chosen under the current scenario,
the effect of the rearrangement will be consequential at other alpha levels. For
instance, it should be noted that the rearrangement applies to the highest quan-
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tile for the Republic of Ireland, Norway, and the UK (even though these quantiles
are not important for V aR computation, which concentrates on losses). All this
demonstrates the importance of the rearrangement procedure when need for it
arises.

Third, the effect of the corrected parameters on the modified Sharpe ratio is not
regular. Mostly, it decreases the ratio (in absolute terms), except for Australia
and France– both showing evidence of non-normality (see appendix D)–where the
ratios increase. Because the parameter correction affects the denominator only,
the V aR values of Australia and France decrease because of the parameters’ ad-
justments. This is not surprising when looking at equations 5 and 6, where S and
K are complex mixtures of Sc and Kc, respectively. In addition, the effect on the
ratio is not proportional, the change being about 30% for Germany (from -0.1164
to -0.0723) and near 0% for Australia.

Returns SR NmSR1% mSR1% mSRrearranged
1%

CmSRrearranged
1%

Australia 9.2516 0.1863 0.0908 0.0582 0.0582 0.0584
Canada 9.2443 0.1482 0.0703 0.0740 0.0740 0.0591
France 5.8941 0.1277 0.0618 0.0414 0.0414 0.0430
Germany 1.8657 -0.1311 -0.0621 -0.1247 -0.1164 -0.0723
Ireland 2.7910 -0.0078 -0.0035 -0.0024 -0.0024 -0.0024
Netherlands 0.8610 -0.1556 -0.0687 -0.0554 -0.0554 -0.0523
New Zealand 16.1395 0.1897 0.0906 0.0638 0.0638 0.0581
Norway 7.2042 0.1923 0.0963 0.0597 0.0597 0.0547
UK 7.1283 0.1761 0.0871 0.0686 0.0686 0.0608
USA 7.4258 0.1955 0.0978 0.0779 0.0779 0.0721

Table 5: Results of the performance measures

The first observation with regard to the rankings in Table 6 is that the three meth-
ods give somewhat different results. This result contradicts the finding of Lee &
Higgins (2009), who noted similar rankings in most instances for valuation-based
property data in Australia, using a similar approach. The difference in rankings
may be questioned, as most returns did not seem to exhibit non-normal behavior
(see Table 7 in appendix D, which shows that the results are generally not signif-
icant). Nonetheless, the levels of skewness and kurtosis are far from those of the
normal law, which justifies considering the higher moments.

The second observation relates to the effect of non-normality on the rankings. The
ranking computed with the normal V aR assumption is very close to the Sharpe
ratio of 1. On the contrary, the effect of higher moments clearly changes the rank-
ing. Once more, this demonstrates the importance of considering non-normality
when using performance measures.

The third observation is that, in most instances, the rankings for the three mSR
ratios are close, but they differ somewhat for the corrected mSR. This is partly
due to the rearrangement procedure, which is mostly superfluous for the thresh-
old considered in the context of this study (except for Germany). However, the
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rankings are a bit different when the parameters are corrected. This is the case
for Australia, Canada, New Zealand, Norway, and the UK. Thus, this result un-
derscores the importance of the correction when normality cannot be guaranteed.

Returns SR NmSR1% mSR1% mSRrearranged
1%

CmSRrearranged
1%

Australia 2 4 3 6 6 4
Canada 3 6 6 2 2 3
France 7 7 7 7 7 7
Germany 9 9 9 10 10 10
Ireland 8 8 8 8 8 8
Netherlands 10 10 10 9 9 9
New Zealand 1 3 4 4 4 5
Norway 5 2 2 5 5 6
UK 6 5 5 3 3 2
USA 4 1 1 1 1 1

Table 6: Ranks of the markets according to performance measures

Figure 2 presents the rankings for all the countries and for all the methodologies
according confidence level α. Predictably, the return and Sharpe ratio are not
impacted by the confidence level as they do not depend on it. The results for the
four other metrics are mixed. For instance, Australia’s ranking for the modified
Sharpe ratio is equal to 6 at 1% and 3 at 3% whereas France’s ranking does not
change with the confidence level. Nevertheless, in most cases, the changes in the
rankings are relatively small. This underlines the robustness of our approach.

5 Conclusion

The traditional Sharpe ratio approach presents some limitations that make it
tricky to use despite its popularity among practitioners. Possible non-normality of
returns is ignored in the traditional Sharpe ratio, and this can cause investors to
invest inappropriately in risky assets. The modified Sharpe ratio makes it possible
to overcome these limitations. In particular, it relies on mV aR, a risk metric that
considers the entire distribution of the returns since its computation is based on
third and fourth moments of the distribution.

The modified Sharpe ratio is based on the Cornish Fisher expansion. This expan-
sion is a useful technique but must be used with caution: the resulting approxi-
mations of the distribution and quantile functions can be non-monotone, and the
skewness and kurtosis parameters of the formula must not be confused with those
of the distribution. These two pitfalls are fully accounted for in this paper, and
thus, the modified Sharpe ratio is properly computed.

The proposed methodology should be appealing to both practitioners and aca-
demics. Indeed, it is relatively easy to compute and facilitates quantitative risk
management in real estate transactions. The modified Sharpe ratio is a powerful
tool when managing and dealing with property portfolios or in the case of large
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Fig. 1: Quantile computations with four methods for all the countries

international investors. The ratio is useful because real estate investment is volatile
by nature and may not always be driven by a normal distribution. However, our
approach remains relevant even with a normal distribution. This work opens the
door to many other risk-adjusted performance measures, such as the Sortino ratio,
the Modigliani ratio, and the Omega ratio.
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(a) Australia (b) Canada (c) France

(d) Germany (e) Republic of Ireland (f) Netherlands

(g) New Zealand (h) Norway (i) UK

(j) USA

Fig. 2: Rankings according to the threshold for all the countries
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A Appendix: Value-at-Risk

A.1 Definition of Value-at-Risk

Informally, Value-at-Risk is the largest percentage loss with a given probability (confidence
level), likely to be suffered on a portfolio position over a given holding period. In other words,
for a given portfolio and time horizon, and having selected the confidence level α ∈ (0, 1), V aR
is defined to be that threshold value, assuming no further trade, such that the probability
that the mark-to-market loss in the portfolio exceeds this V aR level is exactly the preset
probability of loss α.8 Thus, V aR is the quantile of the projected distribution of losses over
the target horizon, in that if α is taken to be the confidence level, V aR then corresponds to the
α quantile. By convention, this worst loss is always expressed as a positive percentage in the
manner indicated. Thus, in formal terms, if we take L to be the loss, measured as a positive
number, and α to be the confidence level, then V aR can be defined as the smallest loss–in
absolute value–such that

P (L > V aR) ≤ α. (8)

A more detailed definition of V aR can be found in the study by Jorion (2007).9

Over the past few years, the popularity of downside risk measures (including V aR) has been
rising. Today, these metrics are replacing standard deviation to evaluate the risk of invest-
ments. The reason behind the growing interest in downside risk measures is the choice of many
regulators (Basel and Solvency) to rely almost solely on downside risk metrics such as V aR or
its derivative, the Expected Shortfall, for the calculus of the required capital.

A.2 Value-at-Risk and real estate

VaR is mainly estimated using one of the following three methods: historical, parametric
(variance–covariance), and the Monte Carlo simulations. All these methods present advan-
tages and drawbacks in the context of real estate. Primarily, both the lack of data from the
commercial real estate sector and issues arising from non-normality of returns are known to
cause issues. Limited data for this sector is one of the primary obstacles to reliable VaR com-
putation. One of the two cases may arise: the investment is either in listed real estate and is
quoted daily with sufficient available data to compute V aR for the portfolio, or the investment
is in direct real estate and it has small datasets. This is particularly true in commercial real
estate, in which investments are generally done by large institutions. The real estate market

8 Note that V aR does not give any information about the likely severity of the loss by which its level
will be exceeded.

9 In terms of gains rather than losses, the V aR at confidence level α for a market rate of return X
whose distribution function is denoted as FX(x) ≡ P [X ≤ x] and whose quantile at level α is
denoted as qα(X) is

−V aRα(X) = sup {x : FX(x) ≤ α} ≡ qα(X).
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is thus comparable to the private equity market, where indices are created from small num-
bers of transactions. Any real estate property index attempts to aggregate real estate market
information in order to provide a representation of underlying real estate performance. How-
ever, observations are generally conducted monthly in the best of cases; else, they are made
quarterly, semi-annually, or sometimes, even annually. Therefore, determining V aR of a real
estate portfolio at a threshold of 1% (as requested by the Basel II framework) using the historic
approach would require a minimum of 100 values (even with 100 values, the minimum of the
series might be an outlier, which represents 8 years even for a monthly index and 25 years for a
quarterly index). Given the need for such a large number of observations, V aR considerations
are frequently irrelevant, since this requirement typically exceeds the recorded history of the
index. The parametric and Monte Carlo methods also show inadequacies: they generally rely
on strong assumptions (such as normality of returns). Thus, the problems include difficulty in
identifying the distribution of a series when dealing with modest datasets.

B Appendix: Skewness and kurtosis

Given a probability distribution f(x) of the random variable X and a real-valued function
g(x), one defines the expectation E[g(X)] =

∫
g(x)f(x)dx, in which case the first moment is

µ = E[X], whereas the higher central moments are then defined as µn = E[(X − µ)n]. The
first task in almost all statistical analyses is to characterize the location and variability of a
dataset. This is captured by the moments of orders one and two, usually called the mean µ and
the variance σ2 = µ2, respectively. A further characterization of the data often includes the
standardized moments of orders three and four, called the skewness γ1 = µ3/σ3 and kurtosis
β2 = µ4/σ4, respectively. These last two measures further describe the shape of a probability
distribution. We briefly state the significance of these two last parameters.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution,
or dataset, is symmetric if it looks the same to the right and left of its center (which is the
mean µ). The skewness of any symmetric distribution, such as a Gaussian one, is necessarily
zero. Negative values for the skewness coefficient indicate that the data are skewed to the left,
whereas positive values indicate that the data are right-skewed. The left skewness means that
the left tail of the distribution is long relative to the right one.

Kurtosis refers to whether the data are peaked or flat relative to a normal distribution.
That is, datasets with high kurtosis tend to have a distinct peak near the mean, then decline
rather rapidly, but still have heavy tails. Datasets with low kurtosis tend to have a flat top
near the mean rather than a sharp peak. The kurtosis formula measures the degree of this
peakedness; for instance, the kurtosis of a Gaussian distribution turns out to be 3.

Fig. 3: Right-skewed distribution (S = 1.75)
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Fig. 4: Fat-tailed distribution (K = 9)

C Appendix: The Cornish Fisher procedure

The Cornish Fisher expansion is a useful tool for quantile estimation. For any α ∈ (0, 1),
the upper αth-quantile of Fn is defined by qn(α) = inf {x : Fn(x) ≥ α}, where Fn denotes
the cumulative distribution function of ξn = (

√
n/σ)(X̄ − µ), and X̄ is the sample mean

of independent and identically distributed observations X1, . . . , Xn. If zα denotes the upper
αth-quantile of N(0, 1), then, the fourth-order Cornish Fisher expansion can be expressed as

qn(α) = zα +
1

6
√
n

(z2α − 1)S +
1

24n
(z3α − 3zα)(K − 3)−

1

36n
(2z3α − 5zα)S2 + o(n3/2), (9)

where S and K are the skewness and kurtosis of the observations Xi, respectively.

The Cornish Fisher expansion is useful because it allows one to obtain more accurate results
compared to those acquired using the central limit theorem (CLT) approximation, which is
the same as zα defined in the main text. A demonstration and example of the greater accuracy
provided by the Cornish Fisher expansion compared to the CLT approximation is reported by
Chernozhukov et al. (2010).
Relation (9), in general, grants a non-monotonic character to qn(α), which means that the true
distribution’s ordering of quantiles is not preserved. The Cornish Fisher expansion formula is
thus valid only if the skewness and kurtosis coefficients of the distribution meet a particular
constraint. This domain of validity has been studied by Maillard (2012), among others. Mono-
tonicity requires the derivative of zCF,α relative to zα to be non-negative. This leads to the
following constraint, which implicitly defines the domain of validity (D) of the Cornish Fisher
expansion:

S2

9
− 4

(
K − 3

8
−
S2

6

)(
1−

K − 3

8
−

5S2

36

)
≤ 0. (10)

In practice, this constraint is rarely taken into account as S and K are generally considered
to be small in finance.

D Appendix: Normality tests

Because our objective in this study is to consider the possible non-normality of the assets’
returns, it may be interesting to check if the asset returns are normally distributed.10 Table

10 As a reminder though, our methodology is still applicable when assets are normally distributed.
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7 presents five normality tests that seek to determine if the markets could be considered as
being normally distributed. All the tests are performed using Matlab functions. Given the size
of the dataset, p-values have been interpolated using Matlab tables derived from Monte Carlo
simulations. The results are not very conclusive and are difficult to interpret. Most of the p-
values are very large (the results at 5% significance level are in bold). This can be attributed
to a widespread issue encountered in the real estate sector: the low number of data points
(14). Some conclusions can, nonetheless, be inferred. The returns for Norway and Australia
are certainly non-normally distributed. New Zealand also shows signs of a non-normal dis-
tribution, but the results are not as conclusive. The returns for France can be considered as
being normally distributed. Finally, and interestingly, contrary to the findings of much of the
literature (see Young et al., 2006), the returns for the UK seem to be normally distributed.11

Anderson–Darling Jarque–Bera Kolmogorov–Smirnov Lilliefors Shapiro—Wilk
Australia (0.0920) (0.0090) (0.5601) (0.1199) (0.0362)
Canada (0.7139) (0.5163) (0.9782) (0.8639) (0.5469)
France (0.0230) (0.0800) (0.4004) (0.0380) (0.0247)
Germany (0.1287) (0.1066) (0.5185) (0.1072) (0.1200)
Ireland (0.2249) (0.0300) (0.7145) (0.2822) (0.0656)
Netherlands (0.4055) (0.6352) (0.5202) (0.1020) (0.3587)
New Zealand (0.0210) (0.0110) (0.1845) (0.0020) (0.0130)
Norway (0.0020) (0.0000) (0.3503) (0.0180) (0.0011)
UK (0.0270) (0.0810) (0.4514) (0.0510) (0.0348)
USA (0.1050) (0.5979) (0.6400) (0.2002) (0.1353)

Table 7: Normality tests (in bold if significant at the 5% level)

11 Given the conflicts among the various tests and the relatively few significant p-values, all these
comments need to be treated with care.
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