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1 Introduction

Here, we propose an advanced approach to calculating approximate quantiles using the Cor-
nish—Fisher (CF) expansion. We focus on the difference between the moments of the original
distribution and those of the transformed distribution in order to resolve the difficulties of using
the CF expansion. This study is in line with the work of MacKinnon (2010), Maillard (2012),
and Amédée-Manesme et al. (2015). The approach and numerical distribution function obtained
in this study can be used to compute quantiles, Value at Risk (V aR), the Expected Shortfall (or
conditional value at risk; CV aR), and other critical values. The general principle of our work is to
replace the original system of equations with an approximated (simpler) function, estimated using
the response surface methodology, that is not as time consuming to use.

CF expansion is part of the Johnson distributions’ family class (see Johnson, 1949). The Johnson
system covers different families of distribution and can in particular take account of the four first
moments of a distribution. The Johnson’s transformation has the flexibility to match any feasible
set of values for the mean, variance, skewness, and kurtosis. This class of transformation can be
extended by considering all possible regular transformations of the standard Gaussian distribution
among which CF or Gramm–Charlier as illustrated by Yeo & Johnson (2000); Naguez & Prigent
(2017). This family of probability distributions can be independently calibrated to the four first
moments of data. The advantage of the Johnson distributions is that quantiles of these distributions
only depends on the quantiles of a standard normal random variable. In this line, the CF expan-
sion is an approximation of the quantiles of a distribution using polynomials in the quantiles of a
gaussian distribution with coefficients depending on the moments of the distribution under scrutiny.

Maillard (2012) highlights the difficulties of using the CF expansion correctly. In particular, he ex-
plains that two pitfalls should be avoided when using the CF expansion: the domain of validity of
the formula (see also Amédée-Manesme et al., 2015), and confusion over the skewness and kurtosis
parameters of the formula and those of the original distribution.1 However, the solution proposed
by Maillard (op. cit.) is restrictive in practice because it requires solving a numerically complicated
equation, which is time consuming. Following the approach of MacKinnon (2010) for computing
the critical values of cointegration tests, we rely on the response surface methodology (RSM). The
general principle of the RSM is to replace the original estimation/computation with a different,
but suitable function that is a polynomial.2 The reliability level is then calculated using the classic
techniques. This allows the direct computation of the CF values. Once the function(s) are esti-
mated, this approach does not require a specialized computer program, is easily implementable,
and is less time consuming than automated algorithm solvers. Our approach should be relevant for
many practical purposes, but particularly for V aR or CV aR computations.

Informally, Value-at-Risk is the largest percentage loss, for a given probability (confidence level),
likely to be suffered by a portfolio position over a given holding period. In other words, for a given
portfolio and time horizon, and having selected the confidence level α ∈ (0, 1), V aR is defined as a
threshold value, assuming no further trade, such that the probability that the mark-to-market loss
in the portfolio exceeds this V aR level is exactly the preset probability of the loss α. Note that
V aR does not give any information about the likely severity of the loss by which its level will be
exceeded. Thus, it is a quantile of the projected distribution of losses over the target horizon, in
that if α is taken to be the confidence level, then V aR corresponds to the α quantile. By convention,
this worst loss is always expressed as a positive percentage in the manner indicated. Thus, in formal

1 In addition, Aboura & Maillard (2016) use the Cornish-–Fisher expansion to revisit the pricing of options, in a context
of financial stress, when the underlying asset’s returns display skewness and excess kurtosis. They derive an exact
formula allowing for heavy tails.

2 Other possibilities exist, but are not covered in this context.
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terms, if we take L to be the loss (L = E(V ) − Vα), measured as a positive number, and α to be
the confidence level, then V aR can be defined as the smallest loss (in absolute value), such that:

P (L > V aR) ≤ α. (1)

A more detailed definition of V aR can be found in Jorion (2007).3
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Fig. 1: Illustration of V aR for pdf and cdf

Figure (1) illustrates how to determine the VaR for a probability distribution with a density (pdf).
For a given threshold α, V aRα is the opposite of the quantile qα of the distribution: the highest
(“best”) value such that the probability of being below this value is smaller than α.

Figure (2) shows the pdf of returns and the pdf of returns conditional on exceeding the VaR. Two
statistical models are considered for modeling the position: the Gaussian distribution, which has
thin tails, and the Pareto–Levy distribution, with “fat” tails that decrease by a power. The two
distributions have parameters such that they have the same VaR.

As shown, V aR is a risk measure that considers only the probability of a loss, not the size of a
loss. Moreover, V aR is usually based on an assumption of normal asset returns, and has to be
carefully evaluated when there are extreme price fluctuations. Furthermore, V aR may not be con-
vex for some probability distributions. Owing to these deficiencies, other risk measures have been
proposed, including the expected shortfall (ES), as defined in Acerbi & Tasche (2002b), also called
conditional value at risk (CV aR) in Rockafellar & Uryasev (2002) and TailVaR in Artzner et al.
(1999). Note that in Acerbi & Tasche (2002a), several risk measures related to ES are considered
and the coherence of ES is proved.

The ES can be expressed as follows (see Acerbi & Tasche, 2002b): Let
←−
FX be the generalized inverse

of the cdf FX of X defined by:

←−
FX(p) = sup {x |FX(x) < p} .

3 In terms of gains rather than losses, the V aR at confidence level α for a market rate of return X, with a distribution
function FX(x) ≡ P [X ≤ x] and quantile at level α denoted as qα(X), is

−V aRα(X) = sup {x : FX(x) ≤ α} ≡ qα(X).
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Fig. 2: Level of returns for Gaussian and stable Paretian distributions with the same VaR

Then, the ES is defined as the average in probability of all possible outcomes of X in the probability
range 0 ≤ p ≤ α:

ESα(X) = − 1

α

α∫
0

←−
FX(p)dp. (2)

Then, for continuous cdf, the ES is given by:

ESα(X) = − (E [X |X ≤ qα(X) ]) , (3)

where qα(X) is the quantile of X at the level α.

Figure (2) illustrates how two probability distributions can have the same VaR, even though one is
thin-tailed (the Gaussian case) and the other is fat-tailed (the Pareto–Lévy case). In this example,
the VaR corresponding to a 99% probability of overshoot is equal to 2.33% of the value of the
position. Nevertheless, a comparison of the expected shortfalls shows different risk levels.

Evaluating the marginal impacts of positions on risk measures and regulatory capital is a key part
of risk management analyses (see, for example, Jorion, 2007).

Over the past few years, the popularity of downside risk measures (including V aR) has been in-
creasing. Today, these metrics are replacing the standard deviation when evaluating the risks of
investments. The reason behind the growing interest in downside risk measures is the choice of many
regulators (Basel and Solvency) to rely almost solely on metrics such as V aR, or its derivative,
CV aR, when determining required capital. Indeed, the crucial step in the worldwide adoption of
V aR was the Basel II Accord of 1999, which resulted in a nearly complete adoption of the measure
(Basel III must be applied by 2019). More recently, Solvency II regulations (for insurers in Europe)
proposed using V aR as a reference measure in determining required capital. The Basel Accord
requires that banks recalculate their V aR periodically and always maintain sufficient capital to
cover the losses projected by V aR. Unfortunately, there is more than one measure of V aR, because
volatility, a fundamental component of V aR, remains latent. Therefore, banks must use several
V aR models, at least for backtesting purposes, and so must compute a range of prospective losses.
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In this paper, we do not directly address the appropriateness of V aR as a risk estimator, nor
the adequacy of this measure for risk budgeting purposes. It suffices that regulators have seen fit
to choose a V aR measure for required economic capital calculations, and that its computation is
mandatory for all regulated practitioners. The same holds for CV aR. Thus, V aR and CV aR are
essential research subjects and of considerable interest to a broad spectrum of academics.

Cornish & Fisher (1938) established the expansion that bears their names. In the case of smooth
random variables, it is possible to obtain an explicit expansion for any standardized quantile of
the true distribution as a function of the corresponding quantile of the unit normal approxima-
tion introduced above. This Cornish–Fisher expansion is then a simple polynomial function of the
corresponding unit normal quantile, where the coefficients of each resulting term are functions of
the moments of the true distribution under consideration.4 For instance, denoting the Gaussian
and the resulting Cornish–Fisher quantiles as zα and zCF,α, respectively, we obtain the following
expression for the normalized Cornish–Fisher quantile:5

zCF,α = zα +
1

6
(z2α − 1)S +

1

24
(z3α − 3zα)(K − 3)− 1

36
(2z3α − 5zα)S

2,∀α ∈ (0, 1), (4)

where S and K denote the skewness and kurtosis coefficients, respectively, of the true distribution.6

The corresponding modified Cornish–Fisher quantile is then simply:

qCF,α = µ+ zCF,α σCF , ∀α ∈ (0, 1), 7, (5)

and the expression for V aR is:

V aRCF,α = −qCF,α ∀α such that qCF,α < 0. (6)

Thus, the Cornish–Fisher expansion aims to approximate the quantile of a true distribution by
using higher moments (skewness and kurtosis) of that distribution to adjust for its non-normality.
Since the moments of the true distribution can be estimated in standard fashion by the sample
skewness S and the sample kurtosis K, these values can then be substituted into equation (4)
to estimate the unknown quantiles (V aR) of the true distribution. As demonstrated in Amédée-
Manesme et al. (2015), the Cornish–Fisher approach leads to approximations closer to the true law
than does the traditional Gaussian approach.

Therefore, the Cornish—Fisher expansion allows us to consider higher-order characteristics of the
distribution when calculating quantiles, so that risky assets exhibiting non-normal distributions
can be treated accurately. Thus, the Cornish–Fisher approach offers several advantages. First, it is
comparatively easy to implement. Second, it allows for skewness and kurtosis in the V aR estima-
tion, unlike the usual Gaussian approximation. Third, the approach makes no assumption about
the time scale and so can be repeated over time.8 This renders the approach particularly relevant
for, say, regulatory purposes. Indeed, the technique is independent of the nature of the underlying
distribution and, thus, of its evolution. Therefore, it can be used regardless of the changes in this

4 This approximation is based on the Taylor series developed, for example, by Stuart & Ord (2009).
5 At the third order, the approximation is: ∀α ∈ (0, 1), zCF,α = zα + 1

6
(z2α − 1)S.

6 It is straightforward to show that in the presence of an underlying Gaussian distribution (S = 0 and K = 3), equation (4)
reduces to the Gaussian quantile. Thus, the Cornish–Fisher expansion can obviously be used when the distribution
is normal).

7 Following Maillard (2012), σCF =
σ√

1 +
1

96
K2 +

25

1296
S4 −

1

36
KS2

8 However, exact distributions have advantages as well: they enable Monte Carlo simulations and, thus, allow for the direct
computation of V aR.
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distribution as the result of new, non-systematic events. This point is fundamental for risk man-
agement, where, as in accounting, one of the basic criteria is the “consistency principle,” requiring
that a company must use the same risk measurements methods from period to period. Fourth,
estimations using the Cornish–Fisher expansion do not require a large amount of data. For a V aR
computation, the relevant quantiles need to be estimated. With a sufficiently large data set, we can
use a straightforward empirical quantile. However, when available data are modest, resorting to
Cornish–Fisher may be useful.9 If the return series is skewed and/or has abnormal tails (kurtosis),
Cornish–Fisher estimates of V aR are more appropriate than traditional methods because, despite
having to determine skewness and kurtosis, the method only requires modest amounts of data.

The Cornish–Fisher expansion owes its popularity in practice to its precision and explicit form,
which make it straightforward to compute and interpret. Although it has proven to be a useful
technique, because it is usually truncated at the third order (see appendix B), its use presents two
major pitfalls: (i) the resulting approximations of the distribution and quantile functions can be
non-monotone if the parameters do not meet the domain of validity; and (ii) the skewness and the
kurtosis of the Cornish–Fisher expansion are generally not those of the true distribution, which can
lead to confusion. Resolving these two issues requires that we combine the works of Chernozhukov
et al. (2010) and Maillard (2012). We do so using a so-called rearrangement procedure (i) with a
correction of the parameters (ii). This leads to the correct use of the Cornish–Fisher expansion.

(i) In fact, the resulting approximations of the distribution and quantile functions can be non-
monotone. There are constraints on the permitted values of the true distributions’ moments so
that the Cornish–Fisher expansion itself yields a well-defined distribution (for more details, see
equation 24 in appendix B). This is due to the third-order truncation of the Cornish–Fisher ex-
pansion and the fact that the polynomials involved in the expansion need to be monotone. The
non-monotonic behavior can lead to incorrect results (as illustrated by Amédée-Manesme et al.,
2015, in Figure 2). Indeed, in such a case, the quantile at a higher threshold can be smaller in
absolute terms than the one at a smaller threshold (| qα1 |<| qα2 | ∀α1 > α2), which is obviously
unpalatable for any cumulative distribution function, and even less desirable when it is used for
risk measurement. A solution to this issue has been proposed by Chernozhukov et al. (2010), who
suggested using a rearrangement procedure restoring the monotonicity of the approximation. The
rearrangement procedure is a sorting operation: the previously obtained values are simply sorted
in increasing order. Furthermore, according to Chernozhukov et al. (2009), in addition to restoring
monotonicity, the rearrangement improves the estimation properties of the approximation. The re-
sulting improvement is due to the fact that the rearrangement necessarily brings the non-monotone
approximations closer to the true monotone target function. This point has already received atten-
tion in the literature (Amédée-Manesme et al., 2015).

(ii) Another difficulty associated with the use of the Cornish–Fisher expansion, truncated at
the third order, is confusion between the skewness and kurtosis parameters of the formula (denoted
here as Sc and Kc, respectively) and those of the underlying true distribution (S and K, respec-
tively). This can lead to considerable mis-estimation of quantiles. Though this point has already
been raised by Maillard (2012), it does not seem to have received sufficient attention elsewhere in
the literature. The author presents a solution to the problem by computing the correct moments
of the distribution resulting from the Cornish–Fisher expansion. This leads to the following true
skewness (S, equation 7) and true kurtosis (K, equation 8) parameters (the technical details are
available in the study by Maillard, 2012)10:

9 The 0.5% V aR of the Solvency II regulation requires a minimum of 17 years of data (17 years = 204 months).
10 Maillard (2012) computes the moments of the fourth-order Cornish–Fisher inverse expansion. The equations presented

here correct a misprint and write S and K as functions of Sc and Kc)
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S =

Sc −
76

216
S3
c +

85

1296
S5
c +

1

4
KcSc −

13

144
KcS

3
c +

1

32
K2
cSc(

1 +
1

96
K2
c +

25

1296
S4
c −

1

36
KcS2

c

)1.5
. (7)

K =


3 +Kc +

7

16
K2
c +

2

32
K3
c +

31

3072
K4
c −

7

216
S4
c −

25

486
S6
c +

21665

559872
S8
c

− 7

12
KcS

2
c +

113

432
KcS

4
c −

5155

46656
KcS

6
c −

7

24
K2
cS

2
c +

2455

20736
K2
cS

4
c −

65

1152
K3
cS

2
c


(
1 +

1

96
K2
c +

25

1296
S4
c −

1

36
KcS2

c

)1.5
− 3. (8)

As demonstrated by Maillard (2012), proper use of the Cornish–Fisher expansion requires that we
invert these relations. This way, the correct skewness and kurtosis can be entered into the expansion
(the correction is required because the Cornish–Fisher expansion is an approximation of order 3).
This can be done numerically.

Note that S and K are the true values of skewness and kurtosis we are working with, while Sc and
Kc are the values we will use in the CF transformation in order to obtain the correct moments
after the transformation. Maillard denotes the functions f and g, such that:

K = f(Kc, Sc) (9)

and
S = g(Kc, Sc). (10)

In practice, the reverse relationships are needed, where Sc and Kc belong in the incoming set of the
searched functions. Following Maillard (2012), we denote these functions as ϕ and ψ, respectively:

Kc = ϕ(S,K) (11)

and
Sc = ψ(S,K). (12)

Here, we propose using the response surface methodology (RSM) to compute the Cornish–Fisher
value at risk (hereafter, CFV aR). This allows us to estimate a function to directly estimate Sc and
Kc and, thus, to overcome the difficulty resulting from the non-explicit form of the functions ϕ and
ψ. However, the nonlinear functions ϕ and ψ are not explicit, which renders the procedure difficult
to use. Indeed, at each use of the procedure, one must solve the system of equations–equations 11
and 12–which is complex and time consuming. This is where our approach using the RSM becomes
useful.

The Response Surface Methodology (RSM) is a set of approaches exploring the relationships be-
tween several explanatory variables and one or more response variables. The RSM gives only an
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(a) K = f(Sc,Kc) (b) S = g(Sc,Kc)

(c) Kc = ϕ(S,K) (d) Sc = ψ(S,K)

Fig. 3: Representations of the f , g, ϕ, and ψ functions

approximation, but it is useful because such models are easy to estimate and apply, even when
little is known about the process. In practice, it means estimating a polynomial model of various
functions to approximate curves or surfaces. Response surface methodology is used to optimize the
parameters of a process when the function that describes it is unknown. The procedure involves
fitting a function to the given data, and then using optimization techniques to obtain the optimal
parameters. This procedure is usually used because it allows the development of a model that is
less time consuming.

The establishment of a clear and consistent RSM optimization algorithm is important for its use
as a tool in scientific applications (e.g., estimating model parameters), where results should be
reproducible and derived via a clear method. All choices concerning the algorithm have to be made
at the outset of an application. The main advantage of the RSM is in large-scale, time-consuming
applications, such as solving equations 11 and 12. However, there is no consensus on a standard
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RSM algorithm because several methods can be used.11 In this work, we rely on the approaches of
Sauerbrei & Royston (1999) and Royston & Sauerbrei (2008).

Technically, RSM is a stage-wise heuristic that searches through various local (sub)areas of the
global area in which the simulation model is valid. We focus on the first stage, which fits first-order
polynomials in the inputs, per local area. This fitting uses the ordinary least squares (OLS) ap-
proach and an ANOVA analysis.

In this study, we develop a polynomial model to obtain the two parameters Sc and Kc. The pro-
cedure implements the RSM to estimate an accurate functional form. This estimation allows us
to optimize the computation time of this process. Instead of simply providing tables (such as in
Maillard, 2012) of the two parameters Sc and Kc, as previous papers have done, we estimate re-
sponse surface regressions. In this sense, our contribution is mainly methodological and practical,
because it proposes using the RSM and makes Maillard’s correction quickly implementable. These
polynomial models run much faster than the (possibly computationally expensive) numerical solver
models.

Thus, a key feature of our analysis is to deal with the difficulties of standard risk modeling. In light
of the recent regulations (Solvency, Basel) that followed the subprime and European debt (Greece)
crises, risk measurements (and V aR and CV aR estimates, in particular) are in great demand by all
financial industries, as well as by regulation authorities. Yet, to date, few studies have concentrated
on V aR or CV aR analyses or, more generally, on risk measurement in the case of non-normally
distributed asset classes. This study fills this gap in the literature by employing an approach based
on Cornish–Fisher expansions. This relies on higher-order moments of returns, which results in an
overall improvement in the computation of downward risk metrics, because the resulting technique
proves sensitive to the characteristics of the underlying true return distribution. Therefore, this
study contributes to the extant literature by proposing a new approach to risk assessment that is
easily and rapidly implementable.

The remainder of the paper is organized as follows. Following a literature review in section 2, the
response surface estimations are presented in section 3, with an emphasis on the adequacy of the
approach. Section 4 analyzes the quality of the estimated functions. Next, an application of the
proposed approach is presented in section 5. Section 6 concludes the paper.

2 Literature review and response surface methodology

Computing V aR and determining distribution quantiles have already been the subject of consider-
able research, following the introduction of V aR into current banking practice (for a comprehensive
review of methods, see Christoffersen, 2012). For V aR estimations, key articles that examine the
best methods to compute V aR include the following: Pritsker (1997), who focuses on Monte Carlo
simulations, Zangari (1996) and Fallon (1996), who concentrate on Cornish–Fisher expansions, and
Longin (2000), who addresses extreme value theory.

A considerable volume of research has concentrated on the best methods to compute V aR. Pichler
& Selitsch (1999) compared five V aR methods in the context of portfolios and options, namely, the
Johnson transformations, variance–covariance analysis, and the three Cornish–Fisher expansions of
the second, fourth, and sixth orders. They concluded that a sixth-order Cornish–Fisher expansion
is the best of the analyzed approaches. The work of Mina & Ulmer (1999) and Feuerverger & Wong

11 Surprisingly few studies systematically compare the performances of these optimization methods.
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(2000) can also be consulted. Jaschke (2001) concentrated on the properties of the Cornish–Fisher
expansion, and its underlying assumptions, in the context of V aR, focusing particularly on the non-
monotonicity of the distribution function, in which case convergence is not guaranteed. 12 Jaschke
discussed how the conditions for its applicability make the Cornish–Fisher approach difficult to
use in practice (points we address in this study). However, he demonstrated that when a data
set obeys the required conditions, the accuracy of the Cornish–Fisher expansion is generally more
than sufficient for one’s needs, in addition to being faster to implement than the other approaches.
Simonato (2011) compare and document the performance of the Cornish–Fisher, Gram–Charlier,
and Johnson approaches for computing value at risk and expected shortfall. His results reveal that
Johnson distributions yield smaller approximation errors than the Gram–Charlier and Cornish–
Fisher approaches when used with exact or estimated moments. More recently, Amédée-Manesme
et al. (2015) used the Cornish–Fisher expansion and a so-called rearrangement procedure to cal-
culate direct real estate V aR. They calculated a rolling V aR over time for returns using the UK
commercial real estate IPD database, and showed how the Cornish–Fisher expansion makes it pos-
sible to adequately account for the non-normality of returns.

The conditional autoregressive value at risk (CAViaR) models developed by Engle & Manganelli
(2004) provide another appealing approach to VaR estimation. CAViaR models are part of the
semiparametric VaR approaches. Using an autoregressive framework, CAViaR models aim to de-
rive the evolution of the desired quantile rather than extracting the quantile from an estimate of
a complete distribution or from a volatility estimate. The approach has the advantage of allowing
the shape of the conditional returns distribution to be time-varying, and for the time-variation to
be different for different quantiles of the distribution. In this sense, these models are also able to
deal with non-normal distribution exhibiting skewed distribution and fat-tails. Empirical evidence
has shown that CAViaR models are competitive with other VaR models (see Bao et al., 2006; Yu
et al., 2010)and has decent empirical performance. Even if CAViaR approaches are appealing, their
implementation are challenging due to some computational difficulties of the model. In particular,
quantile regressions approaches require large amount of data and numbers of parameters for im-
plementation.

A spectrum of strategies tackling high-dimension systems appear in many different disciplines, be-
cause the high dimensionality challenge is rather universal in science and engineering fields. These
strategies include parallel computing, increasing computer power, reducing design space, screening
significant variables, decomposing design problems into sub-problems, mapping, and visualizing the
variable/design space. These strategies tackle the difficulties caused by high dimensionality from
different angles. Owing to space limitations and the fact that some of these strategies are applied
in specialized areas (e.g., parallel computing and increasing computer power), this section reviews
the RSM approach only.

Response surface methodology was developed by Box and collaborators in the 50s (Box & Wilson,
1992). This term was originated from the graphical perspective generated after fitness of the math-
ematical model, and its use has been widely adopted in texts on chemometrics. RSM consists of
a group of mathematical and statistical techniques that are based on the fit of empirical models
to the experimental data obtained in relation to experimental design. Toward this objective, linear
or square polynomial functions are employed to describe the system studied and, consequently,
to explore (modeling and displacing) experimental conditions until its optimization. Theoretical
analysis and empirical tests of the RSM is reported to the books of Myers et al. (2016) and Khuri
& Mukhopadhyay (2010) or the literature survey of Myers (1999).

12 See also the chapter (by Jaschke and Jiang) of Härdle (2009) for a detailed discussion.
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The RSM method dates back to Box & Wilson (1992), who used a second-degree polynomial model
to represent an experiment. Box invented RSM to find the combination of inputs that minimizes
the output of a real, non-simulated system. In this first attempt, they ignored constraints. There
is a vast amount of research and literature on RSM. For extensive information on various aspects
of RSM, we refer the reader to Box & Draper (1987), Myers (1999), Khuri & Cornell (1996),
Del Castillo (2007), and Khuri & Mukhopadhyay (2010). Several surveys have drawn attention
to the RSM, including Hill & Hunter (1966), Myers et al. (2004), Nwabueze (2010), and Ibrahim
& Elkhidir (2011). In addition, the work of Neddermeijer et al. (2000) may be consulted for the
automated optimization of stochastic simulation models using the RSM.13

In practice, the RSM procedure uses the method of least squares to fit quadratic response surface
regression models. Response surface models are a kind of general linear model, in which attention
focuses on the characteristics of the fit response function. The predicted optimal function can be
found from the estimated surface if the surface is similar in shape to a simple hill or valley. If the
estimated surface is more complicated, then the shape of the surface can be analyzed to indicate
directions for new computations. Suppose a response variable y is measured as combinations of
the values of two factor variables, x1 and x2. Then, the quadratic response surface model for this
variable is written as:

y = β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 + ε.

In addition to fitting a quadratic function, the analysis includes a lack of fit test for the significance
of individual factors, and a canonical analysis of the estimated response surface to examine the
overall shape of the curve. If the model is adequate, then both components estimate the nominal
level of the error. However, if the bias component of the error is much larger than the pure error,
then this constitutes evidence that there is a significant lack of fit.

This estimation is based on a fractional polynomial regression. Regression models based on frac-
tional polynomial functions of a continuous covariate are described by Royston & Altman (1994).
Fractional polynomial regressions use an algorithm proposed by Royston & Altman (1994), Sauer-
brei & Royston (1999), or Royston & Sauerbrei (2008), and are implemented using the Stata
command mfp or using the SAS command rsreg. The RSM is flexible, and the recent increase in
computing power allows for the easy use of a range function, such as square, cubic, log, and higher-
order functions.

The RSM has been used primarily in experimental sciences, environmental and technical sciences,
and in marketing. In experimental sciences, numerous experiments based on RSM have been carried
out, resulting in linear and quadratic models that explain the relation between the parameters. By
applying the RSM, it is possible to design experiments, build models, search for optimal conditions
for desirable responses, and evaluate interactions among factors that may influence the efficiency
of a treatment using a reduced number of experiments (see for instance Ahmad et al., 2007; Li et
al., 2010; Prasad et al., 2011; Muhamad et al., 2013).

In environmental sciences, the RSM has been used in various ways, from trade-off analyses between
variables to environmental experiments (Gunst, 1996; Isukapalli et al., 2000; Khataee, 2010). Fur-
thermore, the RSM is widely used in technical sciences (see Bezerra et al., 2008). In the marketing
field, the approach is used to catch changes that may occur in the external environment, such as
changes in customers’ tastes, preferences, and purchasing power, and within firms, such as tech-
nological changes or changes in a product line. The RSM approaches allow the rapid adaptation
of models to extremely complex changes (see Adcroft & Mason, 2007). In this line (see Salmasnia

13 Note that the RSM is subject to some criticism; for example, see Giunta et al. (2006) or Khuri & Mukhopadhyay (2010).
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et al. (2013) or Nath & Chattopadhyay (2007)). Finally, in operations research, the RSM has long
been used in optimization techniques (see for instance Jacobson & Schruben, 1989; He et al., 2012).

3 Using the RSM to estimate the parameters Sc and Kc

The estimation process may be summarized in three steps. First, a data set of the two endogenous
variables Sc and Kc is created. Second, the polynomial model and the choice of the functional form
are defined. Third, the model is estimated, and then the final polynomial model is defined.

3.1 Computation of Sc and Kc

Note that ϕ and ψ are both implicit functions, with the two endogenous variables being unknown.
In order to estimate equations 11 and 12, we require a data set containing the two endogenous
variables Sc and Kc for a set of S and K of interest.

As an illustration, Table 1 reports the 20 × 17 values of K (in rows) and S (in columns), as pre-
sented in Maillard (2012). The grey cells correspond to the couples (S,K) that do not belong to
the validity domain D. For each value of K and S, the cell contains the image of ϕ(S,K) in the
first row (Kc) and ψ(S,K) in the second row (Sc).
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Table 1: Sc and Kc as a function of S and K

PPPPK
S 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0 0 .000 .000 .002 .006 .0171 .049 .145 .459 1.67 3.00 4.46 7.56 6.97 1.9 12.4 1.20 Kc
0 .100 .203 .310 .426 .556 .711 .914 1.22 1.82 2.08 2.26 2.97 2.50 3.46 3.65 2.81 Sc

0.5 .426 .428 .432 .439 .451 .471 .501 .555 .661 .907 1.53 5.32 5.20 9.14 1.7 12.2 13.6 Kc
0 .090 .182 .277 .376 .483 .601 .738 .909 1.14 1.47 2.63 2.26 3.23 3.45 3.64 3.81 Sc

1 .755 .757 .763 .773 .788 .810 .842 .887 .958 1.08 1.31 2.72 7.17 8.96 1.6 12.1 9.68 Kc
0 .084 .168 .255 .345 .439 .541 .653 .781 .935 1.14 1.71 2.96 3.22 3.43 3.63 2.73 Sc

1.5 1.03 1.03 1.03 1.05 1.06 1.09 1.12 1.16 1.22 1.31 1.44 2.16 3.93 5.61 1.4 11.9 13.3 Kc
0 .079 .159 .240 .323 .410 .501 .599 .707 .830 .976 1.41 1.92 2.22 3.42 3.62 3.79 Sc

2 1.26 1.26 1.27 1.28 1.30 1.32 1.35 1.39 1.45 1.52 1.62 2.03 3.28 5.07 6.61 11.7 13.2 Kc
0 .075 .151 .228 .306 .388 .472 .562 .658 .764 .883 1.20 1.69 2.09 2.33 3.61 3.78 Sc

2.5 1.47 1.47 1.48 1.49 1.51 1.53 1.56 1.60 1.65 1.71 1.80 2.09 2.85 4.50 6.16 11.6 13.0 Kc
0 .072 .145 .218 .293 .370 .405 .533 .621 .716 .821 1.08 1.47 1.93 2.23 3.60 3.77 Sc

3 1.65 1.66 1.66 1.67 1.69 1.72 1.75 1.78 1.83 1.89 1.97 2.20 2.70 3.96 5.69 7.21 12.9 Kc
0 .070 .140 .210 .282 .356 .432 .510 .593 .681 .775 .997 1.30 1.75 2.12 2.36 3.76 Sc

3.5 1.82 1.83 1.83 1.85 1.86 1.89 1.91 1.95 2.00 2.05 2.12 2.32 2.70 3.57 5.19 6.81 12.7 Kc
0 .068 .135 .204 .273 .344 .417 .492 .57 .652 .740 .939 1.20 1.57 1.99 2.27 3.75 Sc

4 1.98 1.98 1.99 2.00 2.02 2.04 2.07 2.11 2.15 2.20 2.27 2.45 2.75 3.37 4.71 6.38 7.87 Kc
0 .066 .132 .198 .265 .334 .404 .476 .551 .629 .711 .894 1.12 1.43 1.84 2.18 2.41 Sc

4.5 2.13 2.13 2.14 2.15 2.17 2.19 2.22 2.25 2.29 2.35 2.41 2.57 2.83 3.31 4.33 5.95 7.51 Kc
0 .064 .128 .193 .259 .325 .393 .463 .534 .609 .687 .858 1.06 1.32 1.69 2.07 2.33 Sc

5 2.27 2.27 2.28 2.29 2.31 2.33 2.36 2.39 2.43 2.48 2.54 2.69 2.92 3.31 4.08 5.52 7.13 Kc
0 .063 .125 .189 .253 .317 .383 .451 .52 .592 .666 .828 1.01 1.25 1.56 1.95 2.25 Sc

6 2.53 2.53 2.53 2.55 2.56 2.58 2.61 2.64 2.68 2.73 2.78 2.92 3.11 3.41 3.90 4.84 6.35 Kc
0 .060 .121 .181 .242 .304 .367 .431 .497 .564 .633 .781 .946 1.14 1.38 1.71 2.07 Sc

7 2.76 2.76 2.77 2.78 2.80 2.82 2.84 2.87 2.91 2.95 3.00 3.13 3.30 3.55 3.92 4.54 5.67 Kc
0 .058 .116 .175 .234 .294 .354 .415 .478 .542 .607 .745 .896 1.07 1.27 1.53 1.86 Sc

8 2.98 2.98 2.99 3.00 3.01 3.03 3.06 3.09 3.12 3.16 3.21 3.33 3.49 3.70 4.00 4.47 5.25 Kc
0 .057 .113 .170 .227 .285 .343 .402 .462 .523 .586 .717 .857 1.01 1.19 1.40 1.68 Sc

9 3.18 3.18 3.19 3.20 3.22 3.24 3.26 3.29 3.32 3.36 3.41 3.52 3.67 3.86 4.12 4.50 5.08 Kc
0 .055 .110 .166 .221 .277 .334 .391 .449 .508 .568 .693 .826 .970 1.13 1.32 1.55 Sc

10 3.37 3.38 3.38 3.39 3.41 3.43 3.45 3.48 3.51 3.55 3.59 3.70 3.84 4.02 4.25 4.57 5.03 Kc
0 .054 .108 .162 .216 .271 .326 .382 .438 .495 .553 .673 .800 .936 1.08 1.25 1.45 Sc

15 4.22 4.23 4.23 4.24 4.25 4.27 4.29 4.32 4.35 4.38 4.42 4.51 4.62 4.76 4.93 5.14 5.40 Kc
0 .049 .099 .148 .198 .248 .298 .349 .400 .451 .503 .608 .717 .829 .948 1.07 1.21 Sc

20 4.96 4.96 4.97 4.98 4.99 5.01 5.03 5.05 5.08 5.11 5.14 5.23 5.33 5.45 5.59 5.76 5.96 Kc
0 .047 .094 .141 .187 .235 .282 .329 .377 .425 .473 .571 .671 .773 .878 .987 1.10 Sc

25 5.64 5.64 5.65 5.66 5.67 5.69 5.70 5.73 5.75 5.78 5.81 5.89 5.99 6.10 6.23 6.38 6.55 Kc
0 .045 .090 .135 .181 .226 .272 .317 .363 .409 .455 .548 .643 .739 .837 .937 1.04 Sc

30 6.30 6.30 6.30 6.31 6.32 6.34 6.35 6.38 6.40 6.43 6.46 6.53 6.62 6.73 6.85 6.99 7.15 Kc
0 .044 .088 .132 .176 .221 .265 .309 .354 .398 .443 .533 .625 .717 .810 .906 1.00 Sc

We create a data set of couples (S,K). For each of these, using the gradient method, we estimate
Sc and Kc numerically. As a robustness test, we verify, in addition to the numerical convergence
of the algorithms, that f(Sc,Kc) = S and g(Sc,Kc) = K.

3.2 Estimation of the response surface(s) for (S,K) in the validity domain D

We use the response surface methodology to estimate the two reverse implicit functions ϕ and ψ
in the domain of definition. Estimations outside the domain of definition are feasible, but require
more subsets (see below), which is not the subject of this study. Therefore, this is left for future
research. The functions to be estimated are:

Kc = ϕ(S,K) and Sc = ψ(S,K).

The methodology approximates the shape of the ϕ and ψ functions using a linear combination of
a pre-established set of variables. In this case, we use a combination of the power and logarithm of
S and K.

Using the correct functional form for the response surface regressions is crucial to obtaining useful
estimates. The way the RSM approach is computed is somewhat arbitrary, because many functional
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forms could potentially fit the model.14 The powers are not (usually) known, and must be esti-
mated, together with the coefficients, from the data. The estimations involve a systematic search for
the best power, or combination of powers, from the permitted set. For each possible combination,
a linear regression model, as just described, is fitted, and the corresponding difference from the
true model is noted. The model with the lowest difference is deemed to have the best fit, and the
corresponding powers and regression coefficients constitute the final functional models (Sauerbrei
et al., 2007).

Our objective here is to estimate the two following equations, where ε is a random variable, such
that, E(ε) = 0, V(ε) = σ2

ε . This allows us to define the following stochastic models for each random
variable, Kc and Sc:

Kc = E (Kc|S,K) + εK (13)

and
Sc = sign(S)× E (Sc|S,K) + εS . (14)

Considerable experimentation preceded the choice of the functional form for the regression 13 and
14. Note that the obtained functions differ depending on which polynomials, powers, and functions
are used as the regressors.15 Therefore, one may wish to repeat the procedure with different choices
of polynomials and functions serving as output, thus computing different estimation functions,
especially if the first is near the chosen critical value. Equations 15 and 16 correspond to the
deterministic parts of the models:

E (Kc|S,K) = α+ β1 S
1
2 + β2K

1
2 + β3 S + β4K + β5 S

1
2 K

1
2 + β6 S

3
2

+ β7K
3
2 + β8 S

1
2 K + β9 S K

1
2 + β10 S

2 + β11K
2 + β12 S K

+ β13 S
3
2 K

1
2 + β14 S

3
2 K

1
2 + β15 S K

2 + β16 S
2K + β17 S

3
2 K

3
2

+ β18 ln(S) ln(K) + β19 ln(S)K + β20 S ln(K) + β21 S
−1 + β22K

−1. (15)

In the same way, the expected value of Sc is expressed as:

E (Sc|S,K) = δ + γ1 S
1
2 + γ2K

1
2 + γ3 S + γ4K + γ5 S

1
2 K

1
2 + γ6 S

3
2

+ γ7K
3
2 + γ8 S

1
2 K + γ9 S K

1
2 + γ10 S

2 + γ11K
2 + γ12 S K

+ γ13 S
3
2 K

1
2 + γ14 S

3
2 K

1
2 + γ15 S K

2 + γ16 S
2K + γ17 S

3
2 K

3
2

+ γ18 ln(S) ln(K) + γ19 ln(S)K + γ20 S ln(K) + β21 S
−1 + β22K

−1. (16)

The ideal (and naïve) approach would have a single response surface for all (S,K) in the validity
domain, which seems unrealistic. In this case, and in order to choose a trade-off between the number
of subsets and the adequacy of the model, we define five subsets of the parameters S and K in the
domain of definition (the choice of the number of subsets is beyond the scope of this article). This
choice is somehow ad hoc. The descriptive statistics of these subsets are displayed in Table 2.

14 Standard RSM models usually include repeated powers and log transformation.
15 Although polynomials are popular in data analyses, linear and quadratic functions are severely limited in their range

of curve shapes, whereas cubic and higher-order curves often produce undesirable characteristics, such as edge
effects and waves (see Sauerbrei et al., 2007).
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Table 2: Descriptive statistics for the five subsets (five cases)

Cases Moment Observations Mean St. deviation Min. Max.

Case 1 5 ≤ K ≤ 40 1,057,340 1 .0001876 .9966196 1.001096
0.5 ≤ S ≤ 2.2 1,057,340 1 .000486 .9926362 1.003827

Case 2 5 ≤ K ≤ 40 311,500 1 .0000597 .9992079 1.000205
0 < S ≤ 0.5 311,500 1 .0001378 .9976897 1.001556

Case 3 K ≤ 5 48,281 1.000001 .0004733 .9914649 1.003484
S ≥ 0.5 48,281 1 .0006324 .9943166 1.008879

Case 4 K ≤ 5 23,010 1 .0003475 .9906094 1.008038
0.25 ≤ S < 0.5 23,010 1 .0001057 .9989517 1.001762

Case 5 K ≤ 5 22,834 1 .0013341 .9900169 1.061144
0 < S < 0.25 22,834 1 .0012247 .9737982 1.010939

RSM can be used for the whole dataset (or for an entire surface). However to beter fit the surface–or
the data behind the surface–and to obtain more acurate results, the dataset is often splited. The
spliting of the dataset is common when applying RSM (as suggested by Stata or SAS guides). The
split usually seeks to simplify the regression analysis. Nothing is lost in terms of the precision,
you can thus estimate model coefficients. As aforesaid, it is thus a tradeoff between the number
of subset and the quality of the estimation. In our case, we split the dataset (or the surface) in 5
(denoted case 1 to case 5). The splited database (or splited surface) is easier to estimate and give
more accurate results. The choice of the cases 1 to 5 were chosen aften multiple trials in order to
get results as accurate as possible: all parameters exhibit 3 stars (p-value ≤ 0.001, see tables 3 and
4).

For case 1, the estimations of equations 15 and 16 for Sc and Kc are displayed in equations 17 and
18, respectively. The other cases are presented in Tables 3 and 4. All estimations are for the domain
of definition (non-grey cells) of Table 1. The values of R2 are all one, which shows the reliability
and adequacy of the model. In addition, note that the significance thresholds are all below 0.1%
(the degree of precision is analyzed in the next section). For Kc, we obtain K̂c = ϕ̂(K,S):

K̂c = −5.963 + 21.52S
1
2 − 1.548K

1
2 − 26.52S + 1.820K + 11.08S

3
2 − 0.442K

3
2

− 2.564S
1
2 K + 5.740S K

1
2 + 0.342S2 + 0.0016K2 + 0.880S K

− 3.773S
3
2 K

1
2 + 0.033S

1
2 K

3
2 + 0.001S K2 + 0.072S2K − 0.021S

3
2 K

3
2

− 0.721 ln(S) ln(K) + 0.349 ln(S)K + 0.366S ln(K) + 0.366S−1 − 0.555K−1, (17)
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and for Sc, we obtain Ŝc = ψ̂(K,S)

Ŝc = −1.816 + 6.812S
1
2 − 0.577K

1
2 − 8.635S + 0.508K + 4.235S

3
2 − 0.007K

3
2

− 0.848S
1
2 K + 2.671S K

1
2 − 0.097S2 − 0.0003K2 + 0.225S K

− 1.258S
3
2 K

1
2 + 0.019S

1
2 K

3
2 + 0.0002S K2 + 0.025S2K − 0.0067S

3
2 K

3
2

− 0.105 ln(S) ln(K) + 0.098 ln(S)K − 0.845S ln(K) + 0.134S−1 − 0.416K−1. (18)

Table 3: Kc Response surface estimator according to the 5 subsets

Case 1 Case 2 Case 3 Case 4 Case 5
0.5 ≤ S ≤ 2.2 0 < S ≤ 0.5 S ≥ 0.5 0.25 ≤ S < 0.5 0 < S < 0.25

5 ≤ K ≤ 40 5 ≤ K ≤ 40 K ≤ 5 K ≤ 5 K ≤ 5

contant -5.962∗∗∗ 0.0832∗∗∗ 1.749∗∗∗ -1.612∗∗∗ -0.304∗∗∗

S
1
2 21.53∗∗∗ 0.0451∗∗∗ - 1.894∗∗∗ 0.743∗∗∗

K
1
2 -1.548∗∗∗ 0.732∗∗∗ -6.604∗∗∗ 1.938∗∗∗ 0.597∗∗∗

S -26.52∗∗∗ -0.601∗∗∗ 3.425∗∗∗ - -1.662∗∗∗

K 1.820∗∗∗ 0.124∗∗∗ 1.313∗∗∗ 0.273∗∗∗ 0.676∗∗∗

S
1
2 K

1
2 - 0.396∗∗∗ 7.491∗∗∗ -1.018∗∗∗ -1.073∗∗∗

S
3
2 11.08∗∗∗ 1.261∗∗∗ -11.83∗∗∗ -4.220∗∗∗ 0.226∗∗

K
3
2 -0.0443∗∗∗ -0.0195∗∗∗ -0.858∗∗∗ -0.141∗∗∗ -0.299∗∗∗

S
1
2 K -2.564∗∗∗ -0.0704∗∗∗ - - 0.490∗∗∗

SK
1
2 5.739∗∗∗ -0.528∗∗∗ - - 2.314∗∗∗

S
2

0.342∗∗∗ -0.198∗∗∗ 9.011∗∗∗ 2.164∗∗∗ 0.463∗∗∗

K
2

0.00162∗∗∗ 0.00181∗∗∗ 0.141∗∗∗ 0.0247∗∗∗ 0.0432∗∗∗

S
3
2 K

1
2 -3.773∗∗∗ -0.122∗∗∗ -3.346∗∗∗ 2.786∗∗∗ -0.234∗∗∗

SK 0.880∗∗∗ 0.0836∗∗∗ 0.638∗∗∗ -0.454∗∗∗ -0.891∗∗∗

S
1
2 K

3
2 0.0328∗∗∗ 0.000231∗∗∗ 0.110∗∗∗ 0.0381∗∗∗ -0.0254∗∗∗

SK
2

0.000901∗∗∗ 0.0000956∗∗∗ -0.124∗∗∗ -0.0392∗∗∗ -0.00616∗∗∗

S
2
K 0.0717∗∗∗ 0.0133∗∗∗ -0.642∗∗∗ -0.862∗∗∗ -0.272∗∗∗

S
3
2 K

3
2 -0.0216∗∗∗ -0.00373∗∗∗ 0.499∗∗∗ 0.307∗∗∗ 0.205∗∗∗

ln(S) ln(K) -0.721∗∗∗ -0.0305∗∗∗ -0.517∗∗∗ 0.103∗∗∗ 0.00942∗∗∗

ln(S)K 0.349∗∗∗ 0.00290∗∗∗ -0.650∗∗∗ 0.0341∗∗∗ -0.00642∗∗∗

S ln(K) 0.0928∗∗∗ 0.240∗∗∗ 0.834∗∗∗ -0.481∗∗∗ -0.164∗∗∗

S
−1

0.366∗∗∗ -0.000296∗∗∗ 0.136∗∗∗ 0.0164∗∗∗ -0.0000209∗∗∗

K
−1

-0.555∗∗∗ -0.444∗∗∗ 0.0989∗∗∗ -0.00817∗∗∗ 0.00151∗∗∗

N 1,057,340 311,500 48,281 23,010 22,834
R2 1.000 1.000 1.000 1.000 1.000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: Sc Response surface estimator according to the 5 subsets

Case 1 Case 2 Case 3 Case 4 Case 5
0.5 ≤ S ≤ 2.2 0 < S ≤ 0.5 S ≥ 0.5 0.25 ≤ S < 0.5 0 < S < 0.25

5 ≤ K ≤ 40 5 ≤ K ≤ 40 K ≤ 5 K ≤ 5 K ≤ 5

constant -1.816∗∗∗ -0.0189∗∗∗ 2.111∗∗∗ 0.172∗∗∗ 0.00512∗∗∗

S
1
2 6.812∗∗∗ 0.161∗∗∗ - 0.132∗∗∗ -0.0240∗∗∗

K
1
2 -0.577∗∗∗ 0.0215∗∗∗ -3.498∗∗∗ -0.296∗∗∗ -0.00778∗∗∗

S -8.636∗∗∗ 0.453∗∗∗ -2.870∗∗∗ - 1.277∗∗∗

K 0.508∗∗∗ 0.00139∗∗∗ -0.123∗∗∗ -0.0415∗∗∗ 0.00499∗∗∗

S
1
2 K

1
2 - -0.0862∗∗∗ 3.836∗∗∗ 0.346∗∗∗ 0.0386∗∗∗

S
3
2 4.235∗∗∗ 0.326∗∗∗ 2.956∗∗∗ 1.491∗∗∗ -0.114∗∗∗

K
3
2 -0.00685∗∗∗ -0.00000851∗∗∗ -0.162∗∗∗ -0.0327∗∗∗ -0.000479∗∗∗

S
1
2 K -0.848∗∗∗ -0.00168∗∗∗ - - -0.0336∗∗∗

SK
1
2 2.671∗∗∗ 0.230∗∗∗ - - -0.483∗∗∗

S
2

-0.0969∗∗∗ -0.0136∗∗∗ 2.008∗∗∗ 0.134∗∗∗ 0.265∗∗∗

K
2

-0.000304∗∗∗ 0.00000232∗∗∗ 0.0370∗∗∗ 0.00278∗∗∗ -0.0000520∗∗∗

S
3
2 K

1
2 -1.259∗∗∗ -0.129∗∗∗ -4.884∗∗∗ -1.330∗∗∗ -0.0857∗∗∗

SK 0.226∗∗∗ -0.000326∗∗∗ 1.720∗∗∗ 0.249∗∗∗ 0.109∗∗∗

S
1
2 K

3
2 0.0191∗∗∗ -0.000151∗∗∗ -0.153∗∗∗ 0.0333∗∗∗ 0.00708∗∗∗

SK
2

0.000196∗∗∗ 0.0000493∗∗∗ -0.00138 -0.00129∗∗∗ -0.00487∗∗∗

S
2
K 0.0249∗∗∗ 0.00662∗∗∗ 0.239∗∗∗ 0.205∗∗∗ -0.0332∗∗∗

S
3
2 K

3
2 -0.00666∗∗∗ -0.000649∗∗∗ -0.0883∗∗∗ -0.0597∗∗∗ 0.0161∗∗∗

ln(S) ln(K) -0.105∗∗∗ 0.00396∗∗∗ -0.227∗∗∗ -0.0109∗∗∗ -0.000270∗∗∗

ln(S)K 0.0987∗∗∗ 0.000457∗∗∗ -0.436∗∗∗ -0.0507∗∗∗ 0.000262∗∗∗

S ln(K) -0.845∗∗∗ -0.221∗∗∗ 0.700∗∗∗ 0.114∗∗∗ 0.0513∗∗∗

S
−1

0.135∗∗∗ 0.000228∗∗∗ -0.0739∗∗∗ -0.00419∗∗∗ 0.000000429∗∗∗

K
−1

-0.416∗∗∗ -0.0250∗∗∗ 0.0414∗∗∗ 0.00152∗∗∗ 0.000110∗∗∗

N 1,057,340 311,500 48,281 23,010 22,834
R2 1.000 1.000 1.000 1.000 1.000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3 and 4 present the coefficients for all the 5 subsets for the corrected kurtosis (Kc) equation
and the corrected skewness (Sc) euqation respectively. Indeed, if equations 15 and 16 present the
estimation for the case 1, these two equations are only valid for the set of parameters 0.5 ≤ S ≤ 2.2
and 5 ≤ K ≤ 40. The cases 2 to 5 are presented in the tables 3 and 4. The tables present the
coefficients of the equations for all the cases estimated by response surface analysis. 10 equations
can thus be derived from these two tables (5 for Kc and 5 for Sc). One may also noticed that all
the parameters are significant with p-values below 0.001.

4 Quality of the fitted model

The adequacy of the models is determined using a model analysis, lack-of-fit test, and R2 (coefficient
of determination) analysis, as described in Lee et al. (2000), Weng et al. (2001), and MacKinnon
(2010). The lack of fit is a measure of the failure of a model to represent data in the experimental
domain, where points were not included in the regression, or variations in the models cannot be
accounted for by random error (Montgomery, 2001) (automated in most software). If there is a
significant lack of fit, as indicated by a low probability value, the response predictor is discarded.
In our case, we present the final results directly.

A simple, but relevant way of checking the quality of the estimation is to use the following rela-
tionships, obtained in the case of a perfect estimation:

f(K̂c, Ŝc) = f
(
ϕ̂(K,S), ψ̂(K,S)

)
= K (19)

and
g(K̂c, Ŝc) = g

(
ϕ̂(K,S), ψ̂(K,S)

)
= S. (20)

Considering the kurtosis, the lower the spread between K and f(ϕ̂(K,S), ψ̂(K,S)), the higher is
the quality of the estimation. We define the relative error on the kurtosis as:

Err(K) = f
(
ϕ̂(K,S), ψ̂(K,S)

)
/K, (21)

and the relative error on the skewness as:

Err(S) = g
(
ϕ̂(K,S), ψ̂(K,S)

)
/S. (22)

To confirm the quality of our estimation, we compute eight graphs (scatter plots and histograms)
for all subsets. Note that only the graphs for case 1 are presented in Figure 4, but all are available
in the online appendix (see appendix C).

Figure 4 shows the errors graphically. As underlined by Figures 4a and 4b, we have a “good” global
estimation (because we have a nearly 45 degree line). The estimation is somehow better for the
kurtosis. The histograms (Figures 4c and 4d) on the second line reinforce these results, indicating
that 99% of the errors on Kc are less than 1% and less than 2%, respectively, considering Sc. This
conditional analysis of Err(K) and Err(S), based on the values of both S and K, is confirmed by
Figures 4e, 4f, 4g, and 4h. The two last lines show the spread of the error as a function of S and K.
By construction, the spread on the y-axis of these four graphs is the same as that on the x-axis of
the corresponding histograms. Note that in these four situations, the worst estimation is plotted in
the lowest values of S or K. For instance, considering the kurtosis, we observe that higher positive
errors (> 1) arise when K is around 10. Nevertheless, the errors for S and K are extremely low
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(a) K̂c on Kc (b) Ŝc on Sc
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(below 2%, in all cases).

This study does not aim to obtain “the best” response surface, as mentioned above, which would
imply an ad hoc choice of criteria. However, this is a way of detecting where the estimation can be
improved. This could also indicate points where we have to estimate two different response surfaces,
rather than just one.

5 Application

We conduct two applications, one on V aR and one on CV aR. We use as a benchmark a theo-
retical distribution, namely a Student’s distribution with ν degrees of freedom. For ν > 4, the
expectation is equal to 0, the variance is ν/(ν − 2), the skewness is null, and the excess of kur-
tosis is equal to 6/(ν − 4). Table 5 underlines the usefulness of the correction, comparing the
theoretical V aR with both V aRCF,α and V aRCFc,α. The computations are based on St(5) and
St(7). For instance, V aR0.1% for St(5), is equal to 5.715 (see the second line of Table 5). Using
the Cornish–Fisher transformation, with K − 3 = 6 (S being null for a symmetric distribution),
we get V aRCF,0.1% = 6.754. This leads to a V aR relative error of 18.20%, where the relative er-
ror is defined as the percentage error using the Cornish–Fisher V aR instead of the theoretical V aR:

V aRCF,α − V aRα
V aRα

.

Using the corrected Cornish–Fisher transformation, with Kc− 3 = 2.53, we have V aRCFc,0.1% =
5.863. This leads to a corrected V aR relative error of 2.61%, defined more generally as:

V aRCFc,α − V aRα
V aRα

.

In the case of St(7), even if the errors between the Cornish–Fisher V aR and the true V aR are
lower than those of St(5), the corrected Cornish–Fisher does better, and relatively better for the
smallest probabilities α (as in the previous case). For α = 0.1%, the relative error is around five
times smaller (11.79%/2.43%), considering the correction, while it is half the size (3.31%/1.68%)
with α = 2.5%. The corrected Cornish–Fisher has the same impact in the case of St(7).

Computing the empirical mean of all V aRα, for all probabilities less than α, we obtain an esti-
mation for CV aRα. Because the non-corrected Cornish–Fisher V aR leads to higher errors for the
smallest probabilities (and always with the same sign), the CV aR should be poorly estimated, by
construction. This is illustrated in Table 6, which shows the quality of the correction compared with
the non-corrected Cornish–Fisher transformation. The last two columns correspond to the CV aR
relative errors. This is computed, as for V aR, by dividing the CF CV aR, corrected or not, by the
theoretical CV aR. For instance, for St(7), the theoretical CV aR at 1% is 0.087, the non-corrected
CF is 0.100, and the corrected CF is 0.089. This leads to respective relative errors of 14.40% and
3.01%:

CV aRCF,α
CV aRα

=
0.100

0.087
= 1.1440,

CV aRCFc,α
CV aRα

=
0.089

0.087
= 1.0301.

The shapes of these two errors for both St(5) and St(7) are represented in Figure 5.

Table 5 underlines the two contributions of this paper. On one hand our methodology allows cor-
recting the Cornish–Fisher approximation. Indeed the corrected Cornish–Fisher parameters Sc and
Kc must be estimated from equations 7 and 8 which do not have solutions. The use of RSM and
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Table 5: V aR computation

Student K − 3 Kc − 3 α V aRα V aRCF,α V aRCFc,α
V aRCF,α

V aRα
(%) V aRCFc,α

V aRα
(%)

St(5) 6 2.53

0.05% 6.515 7.755 6.605 19.03% 1.37%
0.1% 5.715 6.754 5.863 18.20% 2.61%
0.5% 4.149 4.710 4.303 13.51% 3.71%
1.0% 3.551 3.917 3.673 10.29% 3.44%
2.5% 2.799 2.938 2.866 4.96% 2.41%
5.0% 2.242 2.247 2.268 0.21% 1.14%

St(7) 2 1.26

0.05% 5.919 6.646 5.945 12.28% 0.43%
0.1% 5.241 5.859 5.316 11.79% 1.43%
0.5% 3.882 4.224 3.976 8.81% 2.42%
1.0% 3.348 3.573 3.425 6.74% 2.31%
2.5% 2.664 2.752 2.708 3.31% 1.68%
5.0% 2.147 2.153 2.166 0.26% 0.85%

Table 6: CV aR computation

Student K−3 Kc−3 α CV aRα CV aRCF,α CV aRCFc,α
CV aRCF,α

CV aRα
(%)

CV aRCFc,α

CV aRα
(%)

St(5) 6 2.53

0.05% 3.026 5.547 3.298 83.34% 9.02%
0.1% 1.563 2.884 1.733 81.99% 10.92%
0.5% 0.258 0.442 0.293 71.26% 13.51%
1.0% 0.112 0.182 0.127 62.46% 13.28%
2.5% 0.036 0.053 0.040 46.61% 11.40%

St(7) 2 1.26

0.05% 2.094 2.485 2.082 18.69% -0.54%
0.1% 1.109 1.315 1.116 18.57% 0.64%
0.5% 0.195 0.224 0.201 16.36% 2.70%
1.0% 0.087 0.100 0.089 14.40% 3.01%
2.5% 0.029 0.032 0.030 10.84% 2.99%
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therefore of the estimated equations for the parameters Sc and Kc allows quick computation of the
parameters and thus easily use of the Cornish–Fisher expansion. On the other hand and follow-
ing the straightforward computation of the parameters Sc and Kc, the corrected Cornish–Fisher
transformation able to give more accurate estimation of V aR and CV aR than normal assumption
or than standard–non corrected–Cornish–Fisher approach (see Figure 5).

The major finding here is therefore that the use of the corrected Cornish–Fisher expansion allied
with the introduction of the RSM for its implementation allows more accurate and more straigh-
forward computation of V aR and CV aR. Unlike previous findings (see section 2) where the use of
the corrected Cornish–Fisher parameters was unrealistic due to the difficulty to solve the related
equations (7 and 8 in this paper) and where the normal assumption was often taken for granted,
this paper show how the RSM allow a straighforward and accurate use of Cornish–Fisher expansion
in finance, risk management and operational research.

6 Conclusion

The challenge of risk modeling is to adequately incorporate the distribution of returns, because the
under- or over-estimation of risk can lead to high losses or to significant missed opportunities. The
aim of this study is to use the Cornish–Fisher expansion correctly to compute V aR and CV aR,
highlighting the difference between the skewness and kurtosis of the distribution and those of the
transformed distribution, following Maillard (2012). Calculating this difference is complicated in
practice because the underlying equations cannot be solved easily. Thus, we make it straightforward
to compute and use by employing the response surface methodology (RSM).

One possible weakness of the Cornish–Fisher approach is the definition of its moments and the
difference between the skewness and kurtosis of the distribution and those of the transformed dis-
tribution. Indeed, the Cornish–Fisher expansion is an expansion at the third order and, therefore,
one must distinguish between the moments of the distribution and those of the transformed distri-
bution. This correction is necessary because not calculating the required moments correctly may
lead to incorrect quantile estimations. However, this limitation can be resolved by transforming the
original moments. This transformation relies on a set of two equations, the resolution of which are
problematic and time consuming. Here, we propose an approach using the RSM that allows direct
and easy computing of the transformed skewness and kurtosis in order to accurately compute V aR
and CV aR.

The Cornish–Fisher approach does not depend on any distributional assumptions, and so may be
the preferred choice when the distributional assumptions required by other modeling approaches
are likely to be violated (e.g., when the return series does not follow a normal distribution, which
is assumed by numerous formulations). Similarly, using our methods, we can obtain meaningful re-
sults, despite a relative paucity of data, which would render many other approaches inappropriate.
These advantages may argue for using our approach in a more general risk management and as-
sessment context. Hence, there are good reasons for practitioners, as well as banks and insurers, to
implement this method alongside other models when working in a non-normal context, or whenever
data sets prove modest. In addition, the proposed approach can be used for regulatory purposes as
a proxy for the true V aR or CV aR when conducting control and backtesting procedures.

Finally, while we limited the use of our techniques to the computation of quantiles using the
Cornish–Fisher expansion, many other financial tools (all requiring complex equations) may also
profit from our approach based on the RSM. It should be possible, and potentially quite interesting,
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to apply our approach to risk comparisons among these various asset classes, and then to apply this
to optimal portfolio choice. Risk managers who need to develop appropriate models of risk should
find a useful approach here, one yielding “internal models” applicable to many asset classes.

Although the methods used to obtain these results are quite computationally intensive, they are
entirely feasible with current personal computer technology. The use of response surface regressions
to obtain accurate function is valuable for two reasons. First, this approach allows one to properly
use the Cornish–Fisher expansion without confusing the skewness and kurtosis of the distribution
with that of the transformation. Second, it makes it possible to relatively quickly compute the quan-
tile resulting from the corrected Cornish–Fisher expansion. Similar methods could be employed in
many other cases where standard numerical methods are time consuming.
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A Appendix: Quantile Functions

The quantile function (or inverse cumulative distribution function) of the probability distribution of a random
variable specifies, for a given probability, the value that the random variable will fall below, with the specified
probability. In fact it is an alternative to the probability density function (pdf).

Let X be a random variable with a distribution function F , and let α ∈ (0, 1). A value of x such that
F (x) = P (X ≤ x) = α is called a quantile of order α for the distribution. Then, we can define the quantile
function by:

qα(X) ≡ F−1(α) = inf {x ∈ R : F (x) ≥ α} , α ∈ (0, 1).

Thus, the quantile function qα(X) yields the value that the random variable of the given distribution will fail to
exceed, with probability α.

B Appendix: The Cornish–Fisher procedure

The Cornish–Fisher expansion is a useful tool for quantile estimations. For any α ∈ (0, 1), the upper αth-
quantile of Fn is defined by qn(α) = inf {x : Fn(x) ≥ α}, where Fn denotes the cumulative distribution function
of ξn = (

√
n/σ)(X̄ − µ), and X̄ is the sample mean of independent and identically distributed observations

X1, . . . , Xn. If zα denotes the upper αth-quantile of N(0, 1), then the fourth-order Cornish–Fisher expansion can
be expressed as follows:

qn(α) = zα +
1

6
√
n

(z2α − 1)S +
1

24n
(z3α − 3zα)(K − 3)−

1

36n
(2z3α − 5zα)S2 + o(n3/2), (23)

where S and K are the skewness and kurtosis of the observations Xi, respectively.

The Cornish–Fisher expansion is useful because it allows one to obtain more accurate results compared to those
acquired using the central limit theorem (CLT) approximation, which is the same as zα defined in the main text.
A demonstration and example of the greater accuracy provided by the Cornish–Fisher expansion compared to the
CLT approximation is reported by Chernozhukov et al. (2010).
In general, relation (23) grants a non-monotonic character to qn(α), which means that the true distribution’s
ordering of quantiles is not preserved. Thus, the Cornish–Fisher expansion formula is valid only if the skewness
and kurtosis coefficients of the distribution meet a particular constraint. This domain of validity has been studied
by Maillard (2012),among others. Monotonicity requires the derivative of zCF,α, relative to zα, to be non-negative.
This leads to the following constraint, which implicitly defines the domain of validity (D) of the Cornish–Fisher
expansion:

S2

9
− 4

(
K − 3

8
−
S2

6

)(
1−

K − 3

8
−

5S2

36

)
≤ 0. (24)

In practice, this constraint is rarely considered, because S and K are generally considered to be small in finance
applications.

C Online appendix - Quality of the estimation results for case 2 to case 5
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Fig. 6: Errors analysis for Case 2: 0 < S ≤ 0.5, 5 ≤ K ≤ 40
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Fig. 7: Errors analysis for Case 3: S ≥ 0.5, K ≤ 5
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Fig. 8: Errors analysis for Case 4: 0.25 ≤ S < 0.5, K ≤ 5
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Fig. 9: Errors analysis for Case 5: 0 < S < 0.25, K ≤ 5
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